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Applied physical science theory has accrued through distilling empirical observations into “laws
of nature” on which new findings are secured. Each field has its own empirical laws and language.
All presumably should derive from physics. The only unifying principle currently is the Second Law
of thermodynamics, postulated as the bridge between physics and macroscopic diffusion evident in
all complex systems. I show that the Second Law is not valid because entropy is generally not
maximum in equilibrium. Deviation from the Second Law widens with system complexity. This
flaw is fatal to the entire theory of entropy because the state of a system cannot be determined
without the Second Law. I reveal the flaw through a comprehensive new theory of thermodynamics
deriving from quantum mechanics without entropy or additional postulates. This new “modal
thermodynamics” theory provides a common, transparent framework for analyzing real systems of
any size and complexity. Empirical laws are thereby grounded directly on physics, which should
facilitate future research and development, particularly in interdisciplinary fields.
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Diffusion is the distinguishing feature of thermody-
namics, compared to mechanics. It is the source of the
traditional notion of dissipation. Diffusion is essential
in transport equations, which form the basis of applied
physical science theories. The Second Law, which states
that entropy of an isolated system does not decrease in
time on average, is postulated as the reason why diffusion
is irreversible, systems equilibrate, and time progresses
forward [1]. But, over the past 170 years, standard en-
tropy theory of Classical Thermodynamics and Statisti-
cal Mechanics has not developed into a seamless rationale
bridging microscopic physics and our world. Intractable
issues stemming from the Second Law itself and its appli-
cation [1, 2] have prevented forming such a bridge. These
issues persist in the development of Quantum Thermo-
dynamics [3, 4] and Relativistic Thermodynamics [5].

Standard theory explicitly avoids speculating about in-
ternal activity and instead aims to discern the overall
state of a system through aggregate exchange with the
outside. Yet diffusion can only be understood as the mo-
tion of individual particles. Diffusion is continual, bal-
ancing in equilibrium to produce zero net flow. Analyz-
ing the change in state functions, such as entropy, with
respect to global parameters cannot capture this activity.

Kinetic methods have been used for developing ther-
modynamics since the foundation of the field. Work
investigating dynamics of many microscopic particles
through the 1840s to 1870s provided insight on the origins
of pressure, heat, equilibrium, the Law of Mass Action,
and the Second Law. These methods employ Lagrangian
mechanics and results are limited to approximately ideal
gases, due to their computational difficulty.

The entropy theories of Rudolf Clausius [6] and Josiah
Willard Gibbs [7] seem to provide a more universal under-
standing of complex processes. An identical form of the
Law of Mass Action, derived from the postulated Laws of
thermodynamics and the Fundamental Equation, appar-
ently supersedes the proportional reaction rate proposed

by Guldberg and Waage [8]. The Boltzmann and Gibbs
postulates associating entropy with probability suggest
that this entropic result is equivalent to kinetic balance.
But this conclusion is subtly, yet fatally, wrong.
Identifying where the error occurs requires developing

an alternative theory of thermodynamics based solely on
kinetic arguments within quantum theory. Furthermore,
because Lagrangian mechanics neglects the microscopic
forces that drive diffusion [9], the evolution of any system
of particles should be evaluated in a more fundamental
way, by the mode of motion each particle occupies and
the modes with which they may interact and to which
they may transition.
Spontaneous events throughout a system and its en-

vironment cause nonunitary reduction of individual par-
ticles to single-particle modes [10]. As the number of
degrees of freedom increases in a system, particle cor-
relation time shrinks, macroscopic and microscopic en-
ergy become distinct, and properties stabilize. Analyzing
system behavior for periods shorter than the correlation
time requires unitary time propagation interspersed with
spontaneous events. The following discussion assumes
that measurements take much longer than the correla-
tion time. Persistently correlated particles are treated as
a distinct species of composite quasiparticle existing in a
set of independent modes with short correlation time.
The current system state is the configuration of occu-

pied modes. Quantum mechanical mode transition rates
determine the overall net energy, momentum and parti-
cle flow rates. This approach naturally distinguishes all
stable particle species with distinct characteristics, which
represent different material phases of the same substance
(e.g. water vapor, liquid and ice) as well as different
chemical forms. The inherently probabilistic nature of
resonant interaction implies that the likelihood for a sys-
tem to recover its prior state becomes practically im-
possible in the thermodynamic limit of many degrees of
freedom.
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All particle dynamics are unified in this theory [11].
Chemical reactions are particle transformations between
species of different substances. Pure first order phase
transitions are transformations between species of the
same substance. Transport is due to transformations be-
tween spatially separated modes. All terms in this theory
are derived from first principles.

Quasi-equilibrium exists when all macroscopic net
flows averaged over a measurement are sufficiently small.
This is a steady state condition, not a maximal condi-
tion, as in entropy theory. Also note that this definition
applies to any environment, including measurement ap-
paratus. Flow occurs as local conditions change, driving
the region toward a new equilibrium state.

An example of a single chemical reaction will suf-
fice as a counter-example to the Second Law; all other
types of transformation produce similar conclusions. A
generic chemical reaction may involve some number of
“reactant” species {Y1, · · ·Yr} producing a number of
“product” species {Yr+1, · · ·Yr+p} obeying a stoichiomet-
ric equation (−x1)Y1 + · · · + (−xr)Yr ↔ xr+1Yr+1 +
· · ·+ xr+pYr+p. The choice of sign for the stoichiometric
coefficients ({x1, · · ·xr} < 0 and {xr+1, · · ·xr+p} > 0)
simplifies (9).

First derive the opposing flow rates. The mode spec-
trum is discrete because a system must be confined to
achieve equilibrium. Let Nj,m be number of particles of
species j in modem with energy ϵj,m . When particles are
uncorrelated over a measurement, forward reaction rate
is the sum of rates of all combinations of particle tran-
sitions producing the products from reactants. Reactant
particles occupying a configuration of modes i transition
to a configuration k of product species at a certain mean
rate Γik. A non-zero rate implies that energy and mo-
mentum is conserved within quantum uncertainty. The
forward rate from each configuration i is proportional to
the mode occupation number for each reactant. The to-
tal forward reaction rate is the sum over all reactant and
product configurations:

Forward rate =

Reactant
config.∑

i

Product
config.∑

k

Γik

r∏
j=1

−xj∏
l=1

Nj,mijl
. (1)

This expression is general, though the particle mode dis-
tribution can be expressed succinctly only in equilibrium.
The reverse reaction rate is similar, with Reactant and
Product exchanged, because coupling is bidirectional.

Deduce the steady mode distribution following argu-
ments in [10]. The number of possible particle configura-
tions Ω that a system may achieve is a sensitive indicator
of the flows within the system. The equilibrium distri-
bution holds when this number is steady in time under
the physical constraints imposed on the system. Con-
sider the set of all particles of a specific species, identi-
fied by subscript j, within some defined boundary. (The

following argument applies to every species within that
boundary and all interaction. The quantum regime may
be analyzed similarly [11].) In the classical regime, when
particles rarely inhabit the same mode, the mean over
the duration of a measurement, indicated by ⟨· · · ⟩t, is

〈
Ω̇

Ω

〉
t

≈

Mode
energy∑

m

[
ln ⟨Nj⟩t + ln gj,m − ln ⟨Nj,m⟩t

− βϵj,m − η
]
⟨Ṅj,m⟩t + η⟨Ṅj⟩t + β⟨Ėj⟩t

(2)

after imposing total number Nj =
∑

m Nj,m and energy
Ej =

∑
m Nj,mϵj,m constraints on the set, and using

Newton’s accent notation for time derivatives. The La-
grange multipliers associated with these constraints are
interpreted as a normalization factor η and inverse en-
ergy scale β ≡ 1/kBT defined as temperature with the
Boltzmann constant kB . It is assumed in (2) that the
measurement takes longer than the correlation time and
that the number of particles with the same mode energy
is much greater than one and less than the mode degen-
eracy, 1 ≪ Nj,m < gj,m, which is valid for all modes
except the lowest few that are occupied by an insignifi-
cant number.

The sum in (2) need only include modes occupied on
average, not necessarily every possible state. Further-
more, note that this average is not reliant on particle tra-
jectories in phase space, which avoids associating proba-
bility with mean sojourn time and the ergodic hypothe-
sis. Neither does this average represent an ensemble nor
our lack of knowledge nor subjective belief, avoiding all
ambiguity in interpreting probability [2, 12, 13].

Out of equilibrium, the total particle number and en-
ergy of the set varies, and the mode spectrum is con-
tinuously shifting, due to the transitions of interacting
particles. When the system settles sufficiently such that
the rates of change in mode spectrum and total particle
number and total energy are small, then the sum in (2)
dominates, yet the rate of change in mode occupation
remains non-zero and uncorrelated. Therefore, a steady
state requires that each coefficient in square brackets is
zero, producing a mean distribution dependent only on
the current steady mode energy spectrum. All mode
transition rate information is contained in ⟨Ṅj,m⟩t. The
mean number of particles of species j occupying each
mode m in the classical regime is

⟨Nj,m⟩t = ⟨Nj⟩t e−(ϵj,m/kBT )−ηj . (3)

Hereafter, all thermodynamic properties are understood
to be mean values and the time brackets are omitted.

This result may be expressed as statistical distribution
over system states with energy Es =

∑
j

∑
m Nj,mϵj,m.

The normalization factor is related to the system parti-
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tion function,

Z(T, {Nk}, V, ..) =
States∑

s

e−Es/kBT , (4)

by

ηj(T, {Nk}, V, ..) = lnZ(T, {N1, .., Nj , ..}, V, ..)
− lnZ(T, {N1, .., Nj − 1, ..}, V, ..)

= ∂ lnZ/∂Nj |V . (5)

The ellipsis represents all other independent parame-
ters. Equation (5) equals the change in partition function
when one particle of species j is added to the system in
equilibrium and so is named the particle partition log-
arithm (PPL). Neither partition function nor PPL are
physical quantities and so need not be extensive or in-
tensive.

The mean forward reaction rate (1) in equilibrium in
the classical regime may then be written as

Forward rate = Ψforward

r∏
j=1

(
Nje

−ηj
)−xj

, (6)

defining the forward effective rate factor as

Ψforward ≡

Reactant
config.∑

i

Γi

r∏
j=1

−xj∏
l=1

exp

[−ϵj,mijl

kBT

]
. (7)

with Γi =
∑

k Γik. In virial particle models, describing
most, if not all, microscopic particles, the PPL includes
a logarithm of the volume, so that reaction rate is a func-
tion of particle number densities.

The mean reverse reaction rate likewise may be written

Reverse rate = Ψreverse

r+p∏
j=r+1

(
Nje

−ηj
)xj

, (8)

with the reverse effective rate factor summed over prod-
uct mode configurations. Equilibrium holds when these
mean rates balance so that their ratio is unity, implying

r+p∏
j=1

(
Nje

−ηj
)xj

= K . (9)

This result matches Eq. (13) in [11]. Here the new “rate
quotient” is defined as

K ≡ Ψforward/Ψreverse , (10)

not to be confused with “reaction quotient.” Transition
rates tend to weight the effective rate factors around an
activation energy specific to each reaction. This acti-
vation energy is shared in both forward and backward
directions and so cancels in the rate quotient. The rate

quotient then tends to be a slowly varying function of
temperature, stress and number density.
Flow cannot be derived in standard theory. Instead,

maximum entropy is stipulated as the equilibrium condi-
tion. Equation (9), absent the rate quotient, is precisely
the result found in standard thermodynamics for chemi-
cal equilibrium under constant temperature and volume
or pressure conditions. Gibbs entropy in equilibrium may
be expressed as

S = kB
∂

∂T

(
T ln

[
Z
/∏

j

Nj !

])∣∣∣∣
V

. (11)

The factorial terms are added to address the Gibbs Para-
dox and make entropy an extensive quantity.
Equilibrium chemical potential is related to Helmholtz

free energy (F = U − TS = −kBT ln[Z/
∏

j Nj !]) by

µj = ∂F/∂Nj |V = −kBT (ηj − lnNj) , (12)

given that the formation energy of elemental particles is
set to zero by Gibbs’s convention. This same relation
follows from Gibbs free energy at constant temperature
and pressure. Equation (9) may then be written

e∆F/kBT = K , (13)

where the free energy of reaction at constant volume or
pressure is identified as ∆F =

∑
j µjxj .

Josiah Gibbs derived his theory from the assumptions
that entropy of an isolated system exists out of equilib-
rium and is maximum in equilibrium [14]. Consequently,
the free energy of a system in contact with an ideal heat
reservoir is minimum in equilibrium, implying ∆F = 0
[15]. But this conclusion can be true in the above modal
result only if the rate quotient always equals one.
The rate quotient is not identically equal to one for

two primary reasons. First, by definition, Ψforward equals
Ψreverse only for symmetric transformations when the
mode distribution is the same for reactants and prod-
ucts. The rate quotient equals one for spatial transport
transformations in a stationary, homogenous and chemi-
cally inert system, implying uniform temperature, stress
and number density in equilibrium. Ideal gas systems by
definition obey K = 1 in equilibrium. Otherwise, K ≈ 1
may be feasible for inhomogeneous systems under very
limited conditions such as for extremely dilute reactive
solutes whose interaction is dominated by a solvent.
A second argument is that while the derivation of (3)

involves mode transition rates to achieve detailed bal-
ance, they factor out of the condition for the equilibrium
mode population in (2). The Boltzmann distribution
would not be so robust and the world would be a much
different place otherwise. The rate quotient, therefore,
contains all of the mode transition rate information and
∆F contains none. A general equilibrium condition, for a
dynamic process such as reactions, logically must include
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rate information from non-equilibrium states. In other
words, the Boltzmann distribution is sufficient only to
define equilibrium of a stationary, single material phase.
Each possible particle transformation requires an addi-
tional independent rate condition to determine the bal-
anced populations of substances and phases.

The entropy condition, (13) assuming K = 1, is of-
ten construed as detailed balance of kinetic probabilities
by assuming the Gibbs postulate relating entropy dif-
ference between two states to the ratio of their proba-
bilities to occur. But such probability must depend on
transition rates which, again, this condition lacks. Non-
equilibrium probability and entropy cannot be extrapo-
lated from (11).

The Law of Mass Action as derived by Gibbs is (13),
with K = 1, expressed in terms of activity eµj/kBT . Ac-
tivity is evaluated in practice as two empirical factors:
The value in an arbitrarily chosen standard state and
the relative change from this standard to the current
state. The product of relative activity factors is called
the reaction quotient, equal to the exponential of free
energy change in the standard state. The relative fac-
tor is further split into an activity coefficient and mole
fraction. The activity coefficient approaches unity under
ideal conditions and simply appears to account for our
lack of knowledge of the actual chemical potential. But
in light of (13), it mistakenly absorbs the rate quotient
as well, if ∆F = 0 is assumed. This is a likely reason why
the role of the rate quotient has not been appreciated to
date.

Free energy, therefore, is not minimum and entropy is
not maximum in equilibrium, except in simple cases when
K = 1. The Second Law cannot be valid if quantum
mechanics is true.

What evidence supports the Second Law? It is a state-
ment about non-equilibrium entropy, because an isolated
system in equilibrium does not evolve. Stating that the
universe evolves toward higher probability presumes that
a universal probability function exists. The Boltzmann
and Gibbs postulates then define non-equilibrium en-
tropy in terms of this universal probability. Yet no con-
sistent definition for entropy has been found out of equi-
librium [16]. Equations of motion for these functions are
not known. “Notwithstanding its fundamental character,
a unifying theory of entropy production valid for general
processes, both classical and quantum, has not yet been
formulated” [4]. Boltzmann’s H-theorem suggests kinetic
support for the Second Law in an ideal gas only after ar-
tificially invoking molecular chaos, and no general proof
of the H-Theorem has been found [1]. Entropy is said to
be produced internally, beyond our perception, in order
to account for dissipation and latent heat on change of
phase. But these phenomena are accounted for explicitly,
and entropy is a proper state function invariant under all
cyclic processes, when total system energy is conserved,
not just internal energy [17].

Dynamic quantities, namely chemical activity, latent
heat and phenomenological transport coefficients, can-
not be derived from (11), again due to the lack of rate
information. Instead, these parameters are measured em-
pirically or sometimes estimated by kinetic arguments. It
is inconsistent, however, to employ kinetic theory when
necessary and ignore its logic otherwise. This is true for
Quantum Thermodynamics applying standard principles
to systems requiring quantum description [4]. The above
reasoning shows that, when employed universally, kinetic
theory invalidates entropy theory. Gibbs well understood
this hazard: “On the other hand, a method involving the
notion of entropy, the very existence of which depends
upon the second law of thermodynamics, will doubtless
seem to many far-fetched, and may repel beginners as ob-
scure and difficult of comprehension” [18]. (Entropy, free
energy and the Fundamental and Gibbs-Duhem equa-
tions become superfluous statistical identities without
the constraint of the Second Law.) The choice between
“modal thermodynamics” theory, derived from first prin-
ciples as demonstrated above, or semi-empirical entropy
theory, based on postulates, is mutually exclusive.

In modal thermodynamics, all energy, momentum and
particle flows are due to a difference in forward and re-
verse rates akin to (1) and include macroscopic and mi-
croscopic parts [11]. The latter represents degrees of free-
dom that are too obscure to be tracked individually and
must be estimated statistically. Quantum fluctuations in
mode transitions disrupt correlated mode populations,
nudging a system toward stable equilibrium in a spon-
taneous process that we call diffusion. We observe the
macroscopic motion of a body as being acted on by a
local “thermodynamic force” that includes the diffusive
part of momentum flow. From our macroscopic perspec-
tive, we naturally associate diffusion with forward time
progression even though particle interactions are sym-
metric in time. Local diffusion assures evolution toward
a global steady state, implying by our logic that time
progresses in the same direction universally. There is no
need for the Second Law to justify an “arrow of time”
and the tendency to evolve toward equilibrium.

This theory reveals the original seeds of confusion. En-
tropy of an ideal gas is maximum in equilibrium because
transformation among species does not occur. Clausius
derived Classical Thermodynamics largely from ideal gas
analysis. Gibbs mistakenly extrapolated Clausius’ con-
clusion to describe multi-species systems. His equilib-
rium condition of equal chemical potentials is an assumed
form of kinetic balance between species that neglects the
statistical mechanics of particle interaction.

Equation (13) does not contradict the premise by
which Clausius deduced his condition on equivalence
value, later named entropy, for simple spontaneous pro-
cesses. Heat transport derived by fundamental kinetic
arguments produces flow from hotter to colder regions
“by itself,” so long as no other stronger thermodynamic
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gradient exists that may cause energy to diffuse against
a temperature gradient. Similarly derived particle and
energy transport and stress equations also match em-
pirical transport laws, exhibiting compound sensitivities
and reciprocal flow relations [11]. The statement “energy,
momentum and particles diffuse toward a steady state”
captures these conclusions, describing all thermodynam-
ics of any system in any state.

Entropy has captivated attention since Clausius pro-
posed it in 1865 [19] because the Second Law appears
to explain evolution in simple and elegant terms by an
intriguing universal condition. It has proven difficult to
probe beneath this facade with confidence, instead re-
vealing a host of persistent issues stemming from several
crucial assumptions. The contradiction identified here
suggests why: Macroscopic behavior we perceive is in-
herently quantum mechanical. Diffusion can only be un-
derstood as discrete, probabilistic transitions and cannot
be determined by any function of population distribution
alone. The practical advantage of this insight is that a
theory based solely on fundamental particle interactions
is open to inspection and may be applied rigorously to
systems of any degree of complexity.
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