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The fluctuation-dissipation theorem is unique in physics by relating an equilibrium property to
dissipation. Derivations of this theorem confuse the roles of fluctuation and mean flow in thermo-
dynamics and introduce dissipation only by assumption. This is a mild issue for understanding
Brownian motion. Yet it strikes at the heart of Lars Onsager’s argument concluding that reciprocal
macroscopic flows must be equal in the quasi-equilibrium limit because correlation of fluctuations is
time reversible. In doing so, he relates irreversible thermodynamic flows to equilibrium fluctuations,
apparently providing the final crucial bridge to secure statistical mechanics as a dynamic theory.
Onsager’s derivation implies, however, that entropy should increase continually, even in equilibrium,
by following a fluctuation-dissipation equation. This contradiction is resolved by quantum mode
analysis that rigorously distinguishes mean flow and random fluctuation and provides a consistent
basis for understanding irreversibility and thermodynamics generally.

Keywords: fluctuation, dissipation, irreversibility, reciprocal relations, Boltzmann principle, Onsager ex-
tremal principle, Nyquist relation, Brownian motion

I. INTRODUCTION

John Johnson observed that the electronic noise across
a resistor measured by a sensitive amplifier is propor-
tional to both its resistance and temperature, indepen-
dent of the resistor composition [I]. Soon after, Harry
Nyquist derived a formula matching these characteris-
tics by invoking the Second Law of thermodynamics [2].
Lars Onsager followed with a general derivation relat-
ing thermodynamic fluctuation and dissipation, implying
that flows due to different properties of a system prepared
under reciprocal conditions must be equal [3| [].

“The Nyquist relation is thus of a form unique in
physics, correlating a property of a system in equilib-
rium (i.e. the voltage fluctuations) with a parameter
which characterizes an irreversible process (i.e. electrical
resistance)” [B, p. 34]. The fluctuation-dissipation theo-
rem (FDT) “is a generalization of statistical mechanics
which affords exact formulation as the basis of calculation
of such irreversible quantities from atomistic theory” [6l
p. 570]. “The fluctuation-dissipation theorem can thus
be used in two ways: it can predict the characteristics
of the fluctuation or the noise intrinsic to the system
from the known characteristics of the admittance or the
impedance, or it can be used as the basic formula to de-
rive the admittance from the analysis of thermal fluctu-
ations of the system. The Nyquist theorem is a classical
example of the first category (Nyquist 1928), whereas,
perhaps, Onsager’s proof of the symmetry of kinetic co-
efficients is the oldest example of the second (Onsager
1931)” [7l p. 256].

These statements are unique in their association of
equilibrium properties with dissipation but in no instance
is the association derived solely from fundamental phys-
ical principles. Each relies on the Second Law postulate
and empirically observed patterns, expressed as trans-
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port laws of nature, to relate fluctuation amplitude to
macroscopic dissipative processes. “We now know that
the Second Law of Thermodynamics can be derived as-
suming ergodicity at equilibrium, and causality. We take
the assumption of causality to be axiomatic. It is causal-
ity which ultimately is responsible for breaking time re-
versal symmetry and which leads to the possibility of
irreversible macroscopic behaviour” [8, p. 1529]. But as
used here, causality is the omission of reverse time events,
which evades explaining the time-symmetry of forces that
originally inspired the need for entropy. The problem is
swept by this reasoning from under one proverbial rug to
another.

Onsager’s conclusion ostensibly represents the missing
driver of irreversible processes in otherwise static clas-
sical and statistical mechanical theories of equilibrium.
Rigorous distinction between fluctuation and bulk flows
reveals the limitations of these statements.

II. RECIPROCAL RELATIONS

In his 1931 paper, Lars Onsager aims to explain gener-
ally why certain flows are observed to be closely related
near equilibrium [3]. He derives analogs of the FDT and
Lord Rayleigh’s principle of least macroscopic dissipation
of energy with thermodynamic forces replacing mechani-
cal ones. His result suggests this reciprocal flow behavior
is consistent with the Second Law, justifying the use of
empirical transport laws in near-equilibrium analysis of
irreversible processes. He reasons as follows.

Onsager considers “aged” systems that have settled to
an equilibrium state characterized by detailed balance in
which the only action to be analyzed is the continual
fluctuation of local parameter values occurring about the
steady average configuration. He states that “We have
assumed microscopic [time] reversibility, and at the same
time we have assumed that the average decay of fluctu-
ations will obey the ordinary laws of heat conduction”
[3, p. 418]. He claims that “there is no logical contradic-
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tion ... [by] neglecting the time needed for acceleration
of the heat flow. This time is probably rather small, e.g.
in gases it ought to be of the same order of magnitude
as the average time spent by a molecule between two
collisions. For practical purposes the time-lag can be ne-
glected in all cases of heat conduction that are likely to
be studied, and this approximation is always involved in
the formulation of laws like [heat conduction]” [3] p. 419].
Therefore, only forward time after excitation is relevant
because fluctuation is zero prior. He also implicitly as-
sumes the Second Law and ergodicity: “In order to cal-
culate [thermodynamic probability] one needs a complete
(molecular) theory of the system in hand. ... (we must
of course assume that these laws do permit statistical
equilibrium of some kind). We expect that such a
system will in the course of time pass through all the
(thermodynamic) states” [l p. 2270].

Onsager defines the thermodynamic force associated
with a parameter as proportional to the spatial gradi-
ent of the mean parameter displacement from the mean
value. The rate of change in mean displacement then
indicates flow. By assuming that empirical transport
laws of macroscopic flows also apply to fluctuations, this
flow may be expressed as a linear combination of thermo-
dynamic forces. Microscopic reversibility of equilibrium
fluctuations in a homogeneous material implies that the
flow associated with one parameter triggered by an ear-
lier fluctuation of another equals the flow associated with
that other parameter when their order is reversed. If fluc-
tuations can be modeled generally by the Boltzmann and
Gibbs principles, relating entropy and state probability,
even when their mechanism is not known, and if entropy
is an analytic function of the various displacement modes,
then the force coefficient matrix is symmetric, revealing
reciprocal relations between flows from all off-diagonal
pairs of forces.

Onsager follows Boltzmann in associating probabil-
ity of thermodynamic states with well-defined residence
time and entropy proportional to the average range of
phase space a state encompasses. He also adopts Josiah
Gibbs’ conjecture that entropy is a dynamic property
well-defined out equilibrium [9] and assumes that a sys-
tem fluctuates among such lower probability states. He
thereby joins equilibrium and nonequilibrium dynamics.

Onsager then associates the local accumulation of heat
implied by flows with the local change in entropy. Total
system entropy grows at a maximal rate equal to the heat
inflow through the local boundary plus internal dissipa-
tion, defined as the product of thermodynamic force and
its conjugate flux, which must be positive to conform to
the Second Law. This result, known as Onsager’s ther-
modynamic extremal principle, appears to validate the
Second Law as representing irreversible processes.

On further inspection, though, there is a basic issue
undermining this interpretation: If fluctuations dissipate
energy like macroscopic flows, then entropy of a system
in equilibrium increases unceasingly because fluctuations
are ever present and uncorrelated. Dissipation is positive

in (5.10) of [3] and (5.8) of [4] and Chapter 8 (161) of [10]
with no heat flow or applied driving force. Continual
growth would contradict the definition of entropy as a
state function and therefore steady in equilibrium.

At first glance, this issue is consistent with Onsager’s
assumption that entropy is maximum for a specific state
so that all fluctuations are then out of equilibrium with
lower entropy. It is then logical that such nonequilibrium
states would evolve on average to equilibrium according
to natural laws observed under similar controlled condi-
tions. Imagine entropy as a hilltop with state as a dot
situated at the peak in equilibrium. Each quick accel-
eration away from the peak draws energy into the sys-
tem which then dissipates gradually within the system as
the dot regresses back to the peak. Energy and entropy
ratchet up continually. But then the crucial question is
how are fluctuations suddenly accelerated from equilib-
rium and what is the energy source? Neglect of fluc-
tuation acceleration does not avoid the contradiction of
mixing reversible physics and irreversible empirical mod-
els without an underlying theory consistently producing
both effects.

The problem is that irreversible dissipation due to lo-
cal mean flows should not be confused with microscopic
fluctuations about the mean properties. Flows are as-
sociated with persistent transfer of particles, energy and
momentum due to differences between mean properties
in adjacent subsystems that satisfy the thermodynamic
limit. This mean transfer is permanent without some
subsequent outside disruption.

There is no separate power source driving fluctuations.
Random collisions and quantum jumps shuffle micro-
scopic energy locally, disrupting any coincidental motion
just as quickly as it forms. This shuffling is a signature
of diffusion yet has no effect on mean flows or equilib-
rium properties [T1]. In effect, it converts heat into heat,
which does not change the equilibrium state because “All
heat is of the same kind,” according to J.C. Maxwell [12].
In other words, fluctuations do not generate net mean
energy transfer. There is not sufficient power in fluctua-
tions to drive irreversible behavior. They do not drive a
system out of stable equilibrium!

Classical thermodynamics represents such processes as
heat exchange between two subsystems with zero change
in entropy of an isolated aged system. In Gibbs’ view,
the entropy of each subsystem fluctuates about a steady
mean value as heat shuffles back and forth. The entropy
of one subsystem necessarily drops when the other in-
creases, which does not contradict the Second Law if it is
understood that the Second Law only pertains to mean
behavior and that no irreversible process has occurred.
The macrostate of this system wanders due to fluctua-
tions with equal residence time through a stationary re-
gion of phase space that is a maximum consistent with
constraints. The hilltop in this case is a flat mesa whose
rim defines equilibrium. Any process over the rim re-
quires a persistent mean shift in conditions to push the
system out of equilibrium.



Entropy growth due to dissipation can only be under-
stood as heat input from a macroscopic energy reservoir
“external” to (i.e. excluded from) the system “internal
energy,” which includes only heat content and forma-
tion energy [I3]. Dissipation represents the conversion
of a non-thermal energy source into heat. For exam-
ple, macroscopic kinetic energy is the source for friction.
Any initial mean motion is damped to zero without a
power source to drive it. All such sources are depleted in
equilibrium. Entropy growth from dissipation therefore
should stop when there is no net mean flow among any
subsystems.

For system entropy to be stable in equilibrium under
Onsager’s assumptions, fluctuation growth would have to
reduce entropy to compensate for entropy growth dur-
ing regression, which is clearly not a negligible issue and
undermines argument that fluctuations represent irre-
versible processes. Fluctuation growth implies greater
correlation and therefore greater local macroscopic en-
ergy, which then dissipates back into heat. Such growth
can only come from the local heat content, representing a
local internal entropy sink ds = d@/T < 0 as heat is lost
during this period. But the Second Law requires inter-
nal entropy production everywhere, expressed as positive
entropy source rate density ds > 0 [I0].

There are several relevant points to make here regard-
ing rapid acceleration. First, dynamic asymmetry im-
poses a preferred direction of time; fluctuations evidently
would grow smoothly and decay suddenly under time
reversal. Second, fluctuation acceleration that occurs
within one or even a few collision times requires a strong,
impulsive force by highly aligned particles to drive flow
of many particles. On one hand, regular occurrence of
such improbable configurations, and the implied drop in
entropy, should be as significant as gradual regression to
the mean. On the other hand, weak impulses driving
a few particles can hardly be characterized by macro-
scopic laws. Third, the FDT implies that dissipation is
proportional to the power spectrum of the fluctuation
amplitude. Rapid rise in amplitude should not be ne-
glected because it represents a significant high frequency
portion of this spectrum. Fourth, if fluctuations obey the
same laws as the corresponding macroscopic irreversible
processes, then thermodynamic forces resist any change;
growth and regression rates should be comparable.

How elemental physics processes produce irreversible
processes is the long sought missing link in this con-
text. Yet Onsager justifies assuming both microscopic
reversibility and fluctuation decay with “The premises
and the consequences of Boltzmann’s principle [Entropy
S = kplog W + Constant for state probability W] have
been discussed by A. Einstein to an extent which will be
practically sufficient for our purposes” [4, p. 2270].

In the paper Onsager cites [I4], Albert Einstein rea-
sons that system state probability is inherent and entropy
is defined through Boltzmann’s principle. Probability is
defined according to Boltzmann as residence time in a
phase space element over an extremely long observation

time such that all accessible states are traversed suffi-
ciently to establish a stable time for each element. Ein-
stein attributes the “apparent irreversibility” of physical
processes to the tendency of a system to evolve to higher
probability states and that the equilibrium state has far
higher probability than all others. Onsager infers that
fluctuations are states which follow Boltzmann’s prin-
ciple and therefore evolve in an apparently irreversible
manner.

How systems evolve from trajectories of lower to higher
probability, i.e. how can processes simply appear irre-
versible in a unitary theory, is another way of stating
the very problem that thermodynamics theory must re-
solve. Simply claiming that it happens provides no basis
for process analysis. Phase space trajectories do tend
to be longer, with lower residence time, as energy in-
creases. But this trend does not indicate that an irre-
versible process has occurred. Debates between Boltz-
mann and Loschmidt about reversibility and Zermelo
and Poincaré about recurrence highlight that determinis-
tic mechanics cannot produce irreversible processes [15].
An isolated deterministic system oscillates unless some
artificial mechanism, such as molecular chaos or coarse
graining, disrupts the trajectory to achieve equilibration.

This approach of “apparent irreversibility” simply
shifts the mystery why systems equilibrate from entropy
to state probability without clarification. While it is rea-
sonable to say that differing residence time suggests a dy-
namical asymmetry, this view still does not explain why
some states develop relatively long residence time rather
than the system oscillating according to Lagrangian me-
chanics. Einstein’s statement is intuitive by the common
notion of probability, but the concept of state probability
is problematic for the following reasons.

In equilibrium, measurement of stable residence time
requires that every microstate is tested (ergodicity), that
evolution is unitary (quantum mechanics omitting spon-
taneous events), that probability is single-valued (equal
probability postulate), and that the universe is steady
during the measurement period. The first three assump-
tions are plausible, in that they produce satisfactory equi-
librium results, but remain generally unproven even in
ideal conditions.

These requirements are implausible out of equilibrium
because the environment of every particle evolves while
approaching equilibrium. Just one spontaneous event
somewhere in the system or its environment is sufficient
to knock the system state off its ideal unitary course.
Then residence time becomes a multi-valued function of
phases space, depending upon its history from the start-
ing state. Repeated experiments from every possible ini-
tial state would yield inconsistent mean behavior because
expected residence time and the settling time to equilib-
rium varies as the system evolves. Also, as we now have
control to create a specific initial state only in very sim-
ple microsystems such as qubits, specific non-equilibrium
states are not accessible in complex systems or in natural
conditions. Therefore, any conclusion about state prob-



ability is circular, requiring an assumption about initial
distribution. Residence time is not a reliable concept out
of equilibrium and there is no known alternative defini-
tion for state probability.

These statements relying on the Boltzmann (or simi-
lar Gibbs) principle apply only to equilibrium, when the
ensemble distribution is stationary. This principle is a
static concept due to the extremely long time needed to
ascertain state probability, averaging over all dynamics
as a result. Comparison of two equilibrium states does
indicate what outside exchange must occur in a qua-
sistatic process connecting them, but yields no insight
why this happens microscopically. Irreversible processes
from a non-equilibrium state to the overwhelmingly prob-
able equilibrium can only be presumed to have occurred
by this principle with no insight about their character.

A final point is that Einstein’s analysis of opalescence
in Ref. [14] does not apply to Onsager’s argument. Ein-
stein expressed density fluctuations as a set of indepen-
dent oscillatory modes and related mode amplitude cor-
relations to the temperature by the equipartition theo-
rem. He then assumes that the local regions remain in
quasi-equilibrium, with uniform temperature and well-
defined pressure and isothermal compressibility, in or-
der to quantify work done during a fluctuation. Einstein
thereby limits his discussion to an initial state with local
regions mutually out of equilibrium evolving by a quasi-
static process toward system-wide equilibrium. The sys-
tem correlation length is large enough near critical points
where opalescence is observed to justify description of
these regions as locally thermalized subsystems with im-
balanced variation.

III. FLUCTUATION-DISSIPATION THEOREM

Harry Nyquist made a similar argument in 1928 de-
scribing Johnson noise, three years prior to Onsager. He
states that “it follows directly from the second law of
thermodynamics that the power flowing in one direction
is exactly equal to that flowing in the other direction”
[2]. Specifically, in equilibrium, current flowing from one
macroscopic element, such as an electrical resistor, must
be matched by equal power flow to that resistor. A form
of the FDT follows by assuming an empirical dissipative
transport law relates applied force proportionally to sys-
tem response by a macroscopic impedance.

Nyquist envisions electromotive charge fluctuations in
one resistor inducing current that dissipates in another,
and vice versa. Macroscopic current flow through a re-
sistor generates heat and consequently increases entropy
regardless of direction. Therefore, entropy of an isolated
circuit would increase with each fluctuation. Entropy
then would not be a state function when other proper-
ties are steady.

Furthermore, this description does not match the mea-
surement of Johnson noise. First, Nyquist neglects heat
flow to the ambient bath containing the resistor as well

as continual exchange with the power supplies driving
the circuit, which disrupts the flow symmetry he pic-
tures. Second, the entire circuit is not in equilibrium
when the resistor and amplifier and thermocouple amme-
ter are maintained at different temperatures or drawing
power from the environment. Fluctuations then should
not be in detailed balance.

Callen and Welton show that the average rate of work
done by a perturbing electric potential applied to a cir-
cuit by a power supply has a similar form as the unper-
turbed expectation value of the variance of rate of change
in electric dipole moment [5]. They argue that this work
is absorbed in the system and so must be dissipation. It
is quadratic in the perturbation and therefore conforms
to classical linear response theory in which “it is possible
to define an impedance, the ratio of force to response...”
[5, p. 35]. They apply this presumed impedance formula
to the unperturbed dipole variance to produce a general
form of Nyquist’s formula. (Onsager also assumes a lin-
ear response: “In all instances this average expectancy
for the rate of transport of heat is related to the momen-
tary distribution by the ordinary macroscopic laws for
the conduction of heat” [3, p. 415]. This claim leads to
his version of the FDT.)

They state that the “We may expect, even in [an] iso-
lated condition, that the system will exhibit a sponta-
neously fluctuating [dipole moment], which may be as-
sociated with a spontaneously fluctuating force ... [that]
does in fact exist” [5l p. 36]. Yet they justify these state-
ments only by assuming the dipole moment obeys an
empirical impedance relation to infer a variance in po-
tential. What generates this force? The power supply
generating the applied potential likely introduces noise
even when the mean bias is zero. But such noise has
the characteristics of the external supply, not the system
under investigation.

Callen and Welton actually show that both work and
fluctuation are regulated by quantum mode transition
rates. One might say that system mode transitions gener-
ate the spontaneous force the authors seek. These quan-
tities can be compared if they share the same mode spec-
trum. An isolated circuit obeys different boundary con-
ditions and mode spectrum than when attached to an
amplifier, so their comparison requires some experimen-
tal qualification.

Equating work and variance indicates the rate of fluc-
tuation production in a steady state if all of the present
fluctuation energy is dissipated by macroscopic transport
laws, assuming that its particles obey the Maxwellian
distribution of the perturbed system Hamiltonian. Kubo
stated later that “The linear response theory has given
a general proof of the FDT which states that the linear
response of a given system to an external perturbation
is expressed in terms of fluctuation properties of the sys-
tem in thermal equilibrium” [7, p. 255]. This statement
is too simple for the following reasons.

A system is linear so long as modes of motion are not
coupled. Consider three analytical regimes: elemental,



thermodynamic and classical. Physics experiments in-
vestigating elemental forces are designed for long corre-
lation time such that quantum collapse of the system
wave function occurs primarily through interaction with
a measuring device. In this regime, system wave func-
tion evolution is unitary during the experiment and the
independent modes are system Hamiltonian eigenfunc-
tions. The system behaves linearly and all interaction is
conservative in this limit of suppressed random events.

In the classical regime, the correlation time is negligi-
bly short and the aggregate effect of microscopic activ-
ity on macroscopic bodies may be represented as known
forces in classical Lagrangian analysis of those bodies
only, while neglecting other forms of diffusion. If these
inferred forces are proportional to position and velocity,
this classical analysis is again linear, with independent
modes of macroscopic body motion matching the classi-
cal Hamiltonian eigenfunctions.

Classical analysis may be practical for some purposes
but is not a complete description. Thermodynamic anal-
ysis treats all particles in the same manner, whether part
of a macroscopic body or diffuse medium. Only then can
all flows be understood consistently [T1]. Linear response
theory does not apply to internally generated fluctua-
tion because, by the reasoning given in the next section,
the quantum modes available to a particle depend on
the local particle configuration, which evolves in a non-
Markovian process with strong feedback and non-unitary
jumps.

An unanswered question in the FDT derivation is
where does the dissipated energy come from and where
does it go? To which system is Kubo referring above?
The assumption of a linear impedance relation implies
that system modes evolve independently with no power
exchange between them. Therefore, either the observed
noise is driven from outside (not internal fluctuation), or
it should not persist (dissipate to zero) in a linear system.

Classical analysis creates an asymmetric model of en-
ergy flows between a relatively large body and ambient
medium. The mechanism that accelerates the body (fluc-
tuation in the medium) is characterized differently from
how energy transfers to the medium (dissipation). This
distinction is necessary to allow classical modes to absorb
energy in a steady state. The medium is not treated as
part of the system, instead as a generic reservoir that
conserves energy by both doing work on the body and
sinking dissipation from it.

The system that Kubo considers is just one body in-
teracting with a surrounding medium. This combina-
tion cannot establish a steady state as the body wanders
through the medium. (A large population of similar bod-
ies, mutually coupled through the medium, is needed to
form a second material phase before an equilibrium con-
dition of coexisting stable distributions can be resolved
within a practical time period.) The medium itself may
approximate equilibrium only if its internal thermaliza-
tion rate is fast and all exchange with the body is rela-
tively very slow. A mesoscopic or larger body can satisfy

these conditions. So Kubo refers to separate systems, one
macroscopic and the other thermodynamic, that interact
out of equilibrium by empirical inference.

This approach is suitable for assessing Brownian mo-
tion but provides no explanation why or how dissipation
occurs. The measurable trajectory of an individual large
body through a medium (or a resistor moving relatively
through a medium of electron current in Johnson’s exper-
iment) indicates both acceleration and assumed friction
forces on the body. Zero net work in a steady state then
relates fluctuation amplitude and impedance without ref-
erence to detailed balance or the Second Law.

Note that this dynamical asymmetry does not exist for
a single phase system. For examples, opalescence is visi-
ble scattering of density fluctuations and does not exhibit
dissipation, and an isolated resistive material fluctuates
but does not by itself generate dissipation in equilibrium.
The sequence producing a chance alignment, e.g. in the
form of a dipole moment, continues randomly and de-
stroys the alignment just as quickly without altering the
mean system properties or producing mean flow of en-
ergy. Fluctuation peaks diffuse far more quickly and eas-
ily back into the local valleys resulting from their forma-
tion rather than motivate high-inertia flow through the
entire system.

IV. RIGOROUS DESCRIPTION OF DIFFUSION
AND FLUCTUATION

These explanations resort to the Second Law and em-
pirical relations for justification because the concept of
flow is not well defined. It is necessary to specify what
is actually measured and under what conditions before
drawing conclusions. In the thermodynamic regime, en-
compassing all but unnaturally isolated microsystems,
mean measured properties are distinct from fluctuating
variation about this mean [I6]. Particle trajectories are
non-unitary, uncorrelated, and non-laminar due to ran-
dom events in the ambient medium, and so mix to pro-
duce diffusion. (Evolution is unitary only between state
reduction events.) Processes beginning out of equilib-
rium are always irreversible because diffusion incessantly
drives a system toward a steady state such that the pro-
cess appears spontaneous. Any attempt to recover a
nonequilibrium state inevitably veers away to a new equi-
librium state governed by the current parameters.

The mean and variance of a system property both de-
pend on the measurement time. Measurements much
shorter or longer than the system correlation time and
length are erratic or obscure underlying trends, respec-
tively. Choosing an appropriate measurement interval
separates random variation from systematic behavior. In
order to discuss thermodynamics coherently, all terms
implicitly reference the measurement period.

We associate macroscopic characteristics of the system
with mean measured values. Incessant transition by in-
dividual particles among quantum modes produces dif-



fusive flux from any subsystem to another. This micro-
scopic activity also causes flux to fluctuate. Flux occurs
simultaneously in reverse direction because mode cou-
pling is bidirectional. Diffusive flux always drives any sys-
tem toward a steady state of zero net mean flux, in which
net aggregate particle motion is balanced in all respects
on average over time between all arbitrarily defined sub-
systems. Such states persist so long as the environment
remains steady such that the outside exchange rate is
small relative to internal thermalization rate, consistent
with our observation of equilibrium. Imbalance causes
measurable flow that appears spontaneous only because
measurement does not register these countervailing cur-
rents separately. Net flows obey transport equations that
match known empirical natural laws under appropriate
approximation and exhibit reciprocal relations if the par-
tition function is analytic in the conjugate parameters.
Therefore, mode transitions account for fluctuation, dif-
fusion, dissipation, the observed “natural laws,” and all
thermodynamic relations completely without postulate
or assumption beyond the standard model of physics [I1].

System macroscopic energy and heat content become
distinct quantities for measurement time longer than the
system correlation time. All particles would follow the
same trajectory in a state with only macroscopic energy
and no heat. Alternatively, zero macroscopic energy im-
plies no synchronization. Systems in which many par-
ticles share macroscopic characteristics tend to transi-
tion into less synchronized states, and so appear to dis-
sipate. In other words, friction is the mean effect of net
diffusive flux converting macroscopic energy into heat.
The reverse is highly unlikely because there are many
more less-synchronized states to transition to at any mo-
ment. The relation between parameter imbalance and
flow is linear, with diffusion coefficient representing the
impedance, when imbalance is small.

Absent such conversion, a system evolves as separate
conservative classical and thermodynamic subsystems:
Any change in system parameters causes microscopic en-
ergy (heat and formation energy) to diffuse toward the
new steady state equilibrium while macroscopic parame-
ters follow frictionless Lagrangian equations of motion. If
the system parameters are then set to a prior configura-
tion, diffusion drives the thermodynamic subsystem back
to the corresponding stable state. Any thermodynamic
process is “macroscopically reversible” if dissipation is
negligible.

Thus we have arrived at a conclusion opposite to the
commonly held view that microscopic reversibility some-
how appears to be macroscopically irreversible. Instead,
particle motion is inherently nonunitary in natural con-
ditions yet systems may be macroscopically reversible if
there is no exchange between macroscopic and micro-
Scopic energy reservoirs.

Fluctuations are the deviation of properties from their
mean macroscopic value. Repeated measurement indi-
cates fluctuation variance. The random nature of mode
transitions causes temporary imbalance of diffusive flux

producing local accumulation or reduction of energy, mo-
mentum and particles. This action necessarily draws
from or pushes to surrounding (spatial or energetic) re-
gions of the mode spectrum. Both growth and reduc-
tion of fluctuations shift heat content, but with zero net
transfer over time. No conversion of macroscopic energy
occurs due to fluctuations and so there is no dissipation.
On one hand, this comment preserves entropy as a mean
state function. Yet on the other hand, fluctuations are
not related to dissipation by definition. Therefore, fluctu-
ations play no analytical role other than initiating phase
transitions and Brownian motion of mesoscopic bodies.

Fluctuation growth and decay rates are equal in this
approach because mode transitions are bidirectional. By
assuming sudden growth not just in local domains but
also across the system, Onsager in effect selects time in-
tervals from the point when mean fluctuation amplitude
peaks until it crosses the system mean value and dis-
regards all other activity. This selection is tantamount
to Boltzmann’s implicit assumption that a system is ini-
tially at peak coherence (maximum of the H-function)
in his rebuttal to the reversibility and recurrence ob-
jections, because only in that case would entropy never
decrease in a deterministic theory [I5, Section 4.5]. It
assures simply by definition that mean fluctuation am-
plitude approaches zero in the selected intervals. Sudden
growth is an unrealistic restriction designed to achieve
the desired conclusion. Onsager’s argument would fail if
a more complete time interval were selected because then
mean fluctuation amplitude would not always regress.

In Statistical Mechanics, equilibrium is maximum dis-
order (consistent with system constraints), according to
the Second Law, and any deviation from equilibrium has
a higher degree of order. Then it is reasonable to asso-
ciate this order with a macroscopic property that decays
by dissipation. Onsager models this process by linear re-
sponse theory, as if this macroscopic motion is the domi-
nant action and all other activity produces no effect but
a weak constant resistance. The dynamic asymmetry of
this regime breaks detailed balance underlying Onsager’s
argument. Assumption of linear response and selection of
the decay interval are both necessary in his derivation of
reciprocal relations but neither choice is consistent with
equilibrium balance.

Stated succinctly, diffusion is the mean result of ran-
dom quantum events, fluctuation is the sum of random
events net of diffusion, and thermal flow is the result
of differing diffusion rates among subsystems expressed
through gradients in thermal properties and parameters.
Fluctuation represents a shift in energy, momentum and
particles that is randomly oriented relative to these gra-
dients and that averages to zero over time.

Consider the case where flow and fluctuation may be
confused: those rare fluctuations involving a very large
number of particles spanning a large system in equilib-
rium. Imagine dividing this system into two subsys-
tems that appear to exchange energy between them as
the fluctuation grows and weakens. If this were macro-



scopic thermal flow, exchange would diminish until both
were uniform and steady. Yet fluctuation dynamics must
be distinctly different, instead driving each subsystem
past this equilibrium state in a repetitive manner. This
marginal activity reflects quantum uncertainty, not a re-
sponse to an applied force. The rate of apparent ex-
change is oscillatory and insensitive to gradients in ther-
mal properties that drive thermal flow. This explains
why fluctuations do not dissipate. Conversely, bulk flow
then cannot be ascribed characteristics of fluctuation dy-
namics in or out of equilibrium and reciprocal relations
cannot be justified by detailed balance of fluctuation.
The suggestion that fluctuation can drive flow confuses
their complementary nature in this analysis. Of all the
particle, momentum and energy exchange implied by the
variation in two successive measurements, only the mean
trends of many successive measurements are predictable
in the form of transport equations. Flow produces a sus-
tained change in the system state, fluctuation does not.
Fluctuation only adds uncertainty in a measurement.

V. CONCLUSION

The FDT highlights a coincidence in certain condi-
tions when the ability to discern fluctuation overlaps the
validity of a macroscopic approximation of flow. It is
limited to experiments on individual mesoscopic objects
in contact with a fluid. Acceleration of the object and
dissipation are separate effects occurring sequentially in
these cases, involving equal power in a steady but non-
equilibrium state. There is no basis for assuming such an
overlap exists for all processes or assuming that fluctua-
tions decay on average like macroscopic laws of nature.
Furthermore, dissipation is invoked only by association
with the response to an applied force. While it is rea-

sonable from experience to guess that mesoscopic mo-
tion would be damped by friction, this connection is not
proven in any derivation the FDT. In each case a “natural
law” is assumed to achieve a known result.

Critically, there is no dissipation in equilibrium yet
all properties continue to fluctuate. By assuming that
macroscopic transport laws apply, the initial state On-
sager evaluates is inherently out of equilibrium and there-
fore not in detailed balance. There is no justification why
mean flows (indicating non-equilibrium) should obey the
detailed balance of equilibrium fluctuations, and conse-
quently why mean flows should obey reciprocal relations.

Diffusion and fluctuation are both symptoms of ran-
dom quantum events, but one does not imply the other.
This conclusion becomes clear when rigorous definition
of measurement distinguishes trajectory mean and devi-
ation. Then diffusion and dissipation are derived directly
from mean parameters without reference to fluctuation.
No additional postulates or assumption beyond the stan-
dard model of physics are necessary to derive all trans-
port laws. Near-equilibrium reciprocal flow relations ex-
ist whenever the partition function is analytic in two or
more system parameters.

In this perspective, flow and fluctuation have differ-
ent sources. Net flow is driven by mean property gra-
dients, as understood in empirical natural laws, and di-
minishes to zero when the mean state is uniform in equi-
librium. Random quantum events produce temporary
bidirectional deviation from mean behavior. Fluctua-
tions then represent net displacement of many indepen-
dent particle shifts, not macroscopic transfer caused by
a common driver. Fluctuation and diffusion are comple-
mentary effects with distinct dynamics, which explains
why fluctuations neither dissipate nor enter thermody-
namic process equations.
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