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Practical analysis of complex systems currently relies on empirical transport laws because diffu-
sion cannot be described by state functions alone, as assumed in Classical Thermodynamics and
Statistical Mechanics. Lagrange mechanics emerge when diffusion is negligible; diffusion does not
emerge in many-body Lagrange theory. I derive comprehensive transport equations directly from
quantum mechanical principles by tallying particle motion individually, providing a concrete, seam-
less foundation for all applied physical science. This new approach resolves, without entropy or
axiom, several critical issues that originally inspired the standard theories, and clarifies analysis of
processes in mesoscopic and macroscopic systems.
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I. INTRODUCTION

Transport equations are the heart of science. With-
out them, theory can only describe static states, begging
the question, of course, how such conditions came to be.
Physics addresses how individual particles interact. Tal-
lying the effect of countless interactions is the subject
of thermodynamics and the basis for all applied physical
sciences. Every field of applied science has grown from
observations distilled into empirical natural laws. These
empirical laws form the foundation for their respective
fields because there is currently no concrete connection
to physics, despite intense and prolonged investigation for
over a century. This gap in understanding slows progress,
particularly in mesoscopic and interdisciplinary science.

Without transport equations grounded in physics, per-
sistent questions continue to confuse analysis. How can
dissipation occur if underlying physics is symmetric in
time? What then determines the direction of time? How
can the Second Law be satisfied across the universe when
the process of equilibration appears to be local? How can
transport laws be defined in a consistent manner? And
how are particle, energy and momentum flows related?

The standard theories of Classical thermodynamics
and Statistical Mechanics were developed to fill this void
by postulating the Second Law of thermodynamics and
other laws from which empirical transport equations sup-
posedly derive. The Second Law was originally formu-
lated by Rudolf Clausius as a static condition comparing
equilibrium states [1]. Josiah Gibbs later elevated en-
tropy to a dynamic variable underlying his definition of
equilibrium, giving the Second Law the appearance of
a dynamic transport equation on par with energy con-
servation [2]. Ludwig Boltzmann and Gibbs separately
proposed that entropy is related to the probability for
a system to be in a specific state. These theories avoid
detailed description of microscopic activity. Recent work
continues this tradition by focusing on entropy produc-
tion, yet no consistent formulation of entropy has been
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found out of equilibrium [3]. These issues persist in the
relativistic regime as well [4]. Dynamic analysis of com-
plex systems still relies on empirical laws and “first prin-
ciples derivation of irreversibility remains a severe prob-
lem, as the ‘first principles’ at hand are all reversible”
[5].

Theoretical attempts to prove that the Clausius, Boltz-
mann and Gibbs postulates obey physics principles gen-
erally employ Lagrangian theory. Molecular chaos in
some form must be imposed arbitrarily, otherwise en-
tropy does not increase [6]. All attempts have failed to
prove the Second Law from first principles for a common
reason: Lagrangian theory explicitly neglects microscopic
forces and the work they do [7]. It is, therefore, appro-
priate for analyzing systems of a few well-defined bodies
pushed by known forces, or in other words, for interac-
tion between fundamental particles and for classical me-
chanics. Microscopic forces stem from individual parti-
cle motion, including resonant, state-collapsing quantum
events. In neglecting them, friction and diffusion are ne-
glected as well.

Standard thermodynamics supposedly overcomes this
omission by relating diffusion to thermal fluctuation of
bulk properties. But adding fluctuation to Lagrangian
equations of motion does not suffice. The fluctuation-
dissipation theorem is valid for a known force causing
fluctuation in the trajectory of a body. However, micro-
scopic force cannot be considered an applied force; diffu-
sion has countless sources that migrate in and out of a
body and render thermodynamic force unpredictable by
position and time alone. Thermodynamic fluctuation is
not related to dissipation.

Lars Onsager’s arguments leading to his reciprocal re-
lations are cited as justifying the use of empirical trans-
port laws for analyzing irreversible (dissipative) pro-
cesses. He assumes that fluctuations in equilibrium obey
empirical transport laws [8]. He concludes that recipro-
cal flows are equal near equilibrium, as observed, because
equilibrium fluctuations obey detailed balance. But fluc-
tuations then must be considered irreversible processes
as well, which would cause entropy to grow continually
in equilibrium. Onsager’s crucial assumption confuses
mean variation, which dissipates by diffusion, with fluctu-
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ations, which are ever present and cannot drive a system
out of equilibrium. Mean properties are uniform in equi-
librium. Any variation, no matter how small, is out of
equilibrium and cannot be in detailed balance, or else the
system would not evolve from this state to equilibrium.
There is no theoretical basis for Onsager’s assumption
[9].

Standard theory cannot be dynamic without under-
standing how fundamental physics produces diffusion.
“One has to conclude that the heat equation and other
transport equations simply do not belong to classical
thermodynamics!”[10] The Second Law was adopted to
act as a necessary dynamic constraint in order to deter-
mine an equilibrium state. But the Second Law remains
vague and subject to many interpretations after 170 years
[10, 11], largely because its premise is not generally valid
[12]. By these arguments neither of the two essential as-
sumptions in standard theory is true! Standard analysis
of complex systems is not anchored in physics. It is in-
consistent to estimate empirical transport coefficients by
kinetic methods within the context of standard theory.

Max Planck recognized that any alternative theory
must be derived from first principles [16]. Percy Bridg-
man speculated that, “Some of the other logical difficul-
ties of the classical statistics, I believe, will also be sur-
mounted by the adoption of the wave mechanics point of
view, which assumes probability to be a primitive prop-
erty of the elements of the model, rather than an emer-
gent property resulting from the cooperation of great
numbers.”[17] The basis for a new theory of thermody-
namics is derived here from quantum transition theory,
avoiding multi-particle Lagrangian equations of motion
by tallying individual particle activity directly. It is dis-
tinct from Quantum Thermodynamics approaches that
focus on entropy growth [3, 13, 14].

II. GENERAL STATEMENTS

The following analysis treats all particles quantum me-
chanically, each being a quantum of excitation, not a
point-like object. Reference [15] gives detailed expla-
nation of comments here and in Sec. III. Stable parti-
cles exist in independent modes of motion under natural
conditions. A particle may be a composite of more sta-
ble particles that persists during the process of interest.
Modes may be represented as superpositions of eigen-
functions of quantum operators. These modes conform
to all physical constraints on a system. Particles interact
through emission an absorption of field bosons, whose
influence may be approximated as force fields in the non-
relativistic limit. These processes cause particle to tran-
sition into coupled modes at a specific inherent mean rate
determined by quantum equations of motion, conserving
energy, momentum and charge quantum numbers. This
treatment applies as well to so-called active species with
peculiar asymmetric rates [18, 19].

The moment when a particle transitions is not pre-

dictable in principle and interrupts unitary evolution of
its wave function. Resonant and non-resonant phase-
changing transitions destroy quantum correlation among
particles without breaking the time symmetry inherent
in fundamental forces. The correlation time tends to be
extremely short even in mesoscopic systems. Correlation
tends to produce oscillatory behavior, which would be
evident in fast measurements. When particles are com-
pletely uncorrelated over the duration of a measurement,
the probability to transition from a given mode equals the
sum of probabilities to transition to each coupled mode
individually. Particles that are persistently correlated
may be treated as a new species of composite quasipar-
ticle occupying a distinct set of uncorrelated modes.

Particles must be contained in order to attain equilib-
rium, otherwise they would continue to disperse. Con-
tainment may be imposed by physical walls or by bind-
ing forces such as in a solid material. Consequently, the
energy spectrum of modes is discrete in this analysis.
Modes of subsystems within a continuous material may
be constructed with periodic boundary conditions to al-
low movement through imaginary subsystem boundaries.

Modes evolve as the particle distribution changes. This
greatly complicates analysis far out of equilibrium. Every
system diffuses toward a steady state, though, such that
the distribution and mode spectrum gradually stabilize.
Active agents, such as Maxwell’s demon, may steer and
even thwart this relaxation by modifying the mode spec-
trum and transition rates. Quasi-equilibrium may then
be defined as when the spectrum is stable enough to re-
veal the dynamics of interest. In more practical terms,
this condition follows when net mean flow of particles,
momentum and energy is small, regardless of what is
outside. Such apparent macroscopic calm belies rampant
activity of continuous opposing diffusive flows.

Dynamic analysis requires knowledge of particle, en-
ergy and momentum transformations. Each material
phase is a stable configuration of particles with unique
properties. Transformations involve transitions between
phases, as well as reactants in a single phase. Therefore,
a practical theory should identify particles not only by
substance but also by the phase it is in. Each stable form
of particle is considered a unique species in this theory.
Consequently, all dynamics can be treated in a unified
manner.

A system is any chosen collection of particles, which
may exist within an arbitrarily defined boundary and
may be select species of a mixture. Systems are implic-
itly subsystems that may exchange particles, energy and
momentum with regions outside. The state of a system is
the current configuration of particles. This configuration
varies continually as particles transition among modes of
motion due to their interaction. The energy of a sys-
tem is the total kinetic and potential energy within its
boundary.

Mode population and transition rates together deter-
mine the flux of particles, momentum and energy. Net
flux then determines the force on a system and its rate of
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change in energy and particle number. This information
is necessary and sufficient to determine how any system
evolves.

Measurement of the current state is an interaction sim-
ilar to what occurs continually between constituents. In
the thermodynamic limit, measurement usually samples
a small subsystem, with negligible flows if done ideally.
The measurement apparatus may significantly influence
the modes, and therefore the flows and equilibrium, of
very small systems. Thermal fluctuation and quantum
collapse both contribute to measurement uncertainty.

All measurements require finite duration. Therefore,
define all system independent parameters and dependent
properties as the average over a measurement period.
When this period is longer than the correlation time
of the system, then particle energy effectively separates
into macroscopic (mode independent average) and micro-
scopic parts. The latter includes the energy required to
form each particle in its ground quantum state. Mean
system energy U may be expressed as the sum of mean
macroscopic energy Emacro, heat content Q and particle
formation energy,

U = Emacro +Q+

species∑
j

ε0jNj , (1)

where ε0j and Nj are the formation energy and mean
number of particles in the system of the jth species. Am-
bient field energy is included in the macroscopic part so
that U is the absolute total energy. (This property should
not be confused with standard “internal energy,” which
does not recognize macroscopic energy or different species
of the same substance and, therefore, cannot properly ac-
count for friction and latent heat.) Heat content can be
inferred by subtracting the measured macroscopic energy
from the computed values of U and formation energy.

Fluctuation in property values generally diminish rela-
tive to system size as size increases. The thermodynamic
limit corresponds to when fluctuation in mean property
values is sufficiently small for practical purposes. It is
usually more accurate to evaluate simple systems by me-
chanical equation of motion, rather than by thermody-
namic flows. The resulting mode population distribution
and transition rates would be input directly in the defin-
ing rate equations developed below. These rate equations
reduce to familiar form by assuming that all subsystems
satisfy the thermodynamic limit. Mesoscopic systems
may need a combination of both strategies.

III. EQUILIBRIUM

Quasi-equilibrium is defined as a steady state when all
flows are practically zero on average over a measurement.
The mode spectrum and mean occupation number must
also be steady when net flow stops. A system can settle
to equilibrium only if flow to the outside is negligible.

Regions within a larger system can achieve these condi-
tions locally and be described as thermalized subsystems
with local equilibrium properties.
The number of system configurations Ω is sensitive

to flows. This number can be formulated by common
combinatorial methods assigning particles of the same
energy ϵ and canonical momentum p to one “bucket,”
given that they are dynamically equivalent, with the re-

sult lnΩ =
∑buckets

i lnΩi. Outside flow is made explicit

by adding five terms that are identically zero: ln Ω̃ =
lnΩ+W (N−

∑
Ni)+βE(E−

∑
ϵiNi)+βp ·(P−

∑
piNi),

with sums over all buckets. Coefficients W,βE and βp

evolve with the system. Equilibrium then corresponds to
zero average rate of change of this number over a mea-
surement: ⟨∂t ln Ω̃⟩t = 0. Neglecting the very slow rate of
change in these coefficients and mode energy and momen-
tum near equilibrium, this condition is approximately

0 ≈
Buckets∑

i

⟨∂t lnΩi⟩t − (W + βEϵi + βp · pi) ⟨Ṅi⟩t , (2)

if outside mean particle and energy flow and force applied
on the system, W ⟨Ṅ⟩t + βE⟨Ė⟩t + βp · ⟨Ṗ⟩t , are far
smaller. This is the criterion for quasi-equilibrium.
As modes of elemental particles transform smoothly in

quantum field theory, the occupation number is invariant
for all inertial reference frames. Because p̄ = {ϵ,p} is a
4-vector, the β parameters must also transform as a 4-
vector such that β̄ν p̄

ν = βEϵi+βp ·pi is a 4-scalar. This is
satisfied when β̄ = β0ū/c is proportional to the 4-velocity
ū = γu{c,u} of one observer moving relative to another
with velocity u. The momentum parameters are prac-
tically zero and the energy parameter is conventionally
defined as βE = β0 = 1/kBT in the observer’s reference
frame and other non-relativistic frames. In that case, all
modes degenerate solely in energy are combined in one
bucket and equally populated. Yet four “temperature”
parameters are needed to infer an equilibrium distribu-
tion in a relativistically fast moving frame.
This reasoning applies to each subsystem of a specific

species in a mixed system. In the observer frame, the
mean equilibrium population of species j in mode indexed
by i of energy ϵji is

⟨Nji⟩t ≈ 1/
(
eϵji/kBT+Wj ± 1

)
, (3)

assuming that the measurement period is longer than
the correlation time and that net exchange of energy and
particles with the outside is negligible. The plus sign ap-
plies to fermions, because they cannot occupy the same
mode, and minus for bosons. These formulas are valid
for any interaction and mixture of species. Both distri-
butions approximate ⟨Nji⟩t ≈ ⟨Nj⟩te−ϵji/kBT−Wj at high
temperature, defining the classical regime, when particles
rarely exist in the same mode and so are effectively dis-
tinguishable.
Note that this steady state derivation only involves

modes that are active over a finite period, and so avoids
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ergodicity issues [6], as well as ambiguity in defining prob-
ability. The average describes the actual system, not an
ensemble. Also, the state of the outside environment is
irrelevant so long as net flow across the boundary is neg-
ligible.

These results are reproduced by a general analytical
method in which the time averaged likelihood for a sys-
tem to be in a given particle configuration, called a state
s, is assumed to be

Ps =
1

Z
e−Es/kBT , (4)

where Es =
∑species

j

∑modes
i ϵjiNji is the energy in that

state. The time average brackets are implied for all pa-
rameters and properties from here on. This probability
distribution is normalized by the partition function

Z(T, {Nj}, ··) ≡
states∑

s

e−Es/kBT . (5)

All mean properties are then computed statistically by
summing over states of the state property value weighted
by the probability to be in that state, or equivalently,
as derivatives of lnZ. Therefore, the partition function
contains all information about an equilibrium state. It is
evaluated with specific particle interaction models that
determine the mode spectrum.

The system equilibrium state is uniquely identified by
the set of independent parameters: temperature, particle
numbers, either volume or stress parameters, and any
applied fields. (The prior state from which it evolved is
also necessary in cases of hysteresis.) The first derivative
of the partition function with respect to each independent
parameter is a system property called an equation of state
(EOS). There is a process constraint associated with each
EOS, namely conservation of energy for the temperature
EOS property U , kinetic rate balance for the particle
number EOS, balance of surface forces for volume EOS,
and response to applied fields. Second derivatives of lnZ
are the EOS sensitivities to change in each parameter.
They are simply related when Z is an analytic function
and its derivatives commute. The partition function is
not analytic when a material ruptures or tears in a non-
smooth manner.

The parameter Wj is closely related to the particle
number EOS,

ηj(T, {Nk}, ··) ≡ lnZ(T, {N1, ··, Nj , ··}, ··)
− lnZ(T, {N1, ··, Nj − 1, ··}, ··)

= ∂Nj
lnZ .

(6)

Evidently, eη is the partition contribution of one particle
and η is called the particle partition logarithm (PPL).
However, this PPL does not correspond exactly to the
W parameter in (3). To very high accuracy, Wj = ηj for
fermions, and Wj = ηj + 1/Nj for bosons. It is also con-
sistent to assign Wj = ηj − lnNj in the classical regime,

when all particles are treated as effectively distinguish-
able in different modes.
The change in system energy between equilibrium

states can be estimated by extrapolation. If the change
is small then only the first order, linear terms in the Tay-
lor series of U need be retained. In a system containing
an isotropic fluid with an applied electric field, for exam-
ple, the energy change is ∆U ≈ CV∆T − (∂V U)∆V +

(∂φU)∆φ +
∑species

j εj ∆Nj . Here φ is the electric po-
tential and εj = ∂NjU is the marginal particle energy of
species j at constant volume. Marginal particle energy
is the energy needed to maintain all other parameters in
equilibrium when one particle is added, and is not equal
to the average particle energy U/Nj . A single internal
particle transformation releases or absorbs “latent en-
ergy” equal to

∑
j xjεj , given stoichiometric coefficients

xj of the chemical reaction.
Conservation of energy implies that any change in sys-

tem energy must be balanced by particle and energy flow
through the boundary. For the above example,

∆U = −p∆V +∆Qoutside +∆Einflow
macro

+

species∑
j

ε0j ∆Noutside
j +

∫
dV njqj ∆φ , (7)

with particle number density nj and electric charge qj .
Particles exchanged with the outside may carry macro-
scopic and formation energy as well as heat.

IV. PARTICLE REACTIONS

Fundamental particles are always stable. Metastable
composite particles may transform into each other if en-
ergy, momentum and stoichiometry are conserved. Parti-
cle transformations within a material phase are generally
called chemical reactions. First order phase transitions
occur when a particle transformation involves species in
coexisting material phases. Second order phase transi-
tions, in contrast, are due to quantum constraints causing
the properties of a single species to change dramatically.

Let Γck be the quantum mechanical rate that a set of
“reactant” particles existing in a specific configuration of
modes c transitions to a set of “product” species in mode
configuration k. While we typically think of chemical
processes as consuming reactant to create products, these
labels are in quotes because the transition rate is equal in
both directions, reflecting the time symmetry of physical
forces. (Symmetry breaking weak force interaction is a
rare exception.) The aggregate rate from one reactant
configuration c to any product configuration equals the
sum over all product configurations, Γc =

∑
k Γck.

Consider a generic transformation involving r reactant
species {Y1, ··, Yr} and s product species {Yr+1, ··, Yr+s}
in stoichiometric equation (−x1)Y1 + · · +(−xr)Yr ↔
xr+1Yr+1 + · · +xr+sYr+s. The reactant stoichiometric
coefficients xj are negative to indicate consumption in
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forward transformations. The transition rate is equal
for all particles of the same species in the same mode.
Therefore, the effective rate from configuration c is mul-
tiplied by as many factors as participating particles, each
of which is the number of each reactant species in each
mode of the configuration. The total forward rate is the
sum over all reactant mode configurations,

Rforward =

Reactant
config.∑

c

Γc

r∏
j=1

−xj∏
m=1

Nj,cj(m) , (8)

where Nj,cj(m) is the population of species j in mode m
of configuration c. The reverse rate is likewise

Rreverse =

Product
config.∑

k

Γk

s∏
j=r+1

xj∏
m=1

Nj,kj(m) , (9)

given that Γk =
∑

c Γck is the sum over reactant config-
urations. Net transition rate is simply Rnet = Rforward −
Rreverse.

Out of equilibrium, particles continue to transform un-
til either one of the participating species is exhausted, or
the counter flows are balanced and net rate is zero. The
latter case establishes an equilibrium kinetic condition,

Rforward = Rreverse , (10)

that specifies the relative population between species in
a reactive mixture. This condition is complementary to
(3), which specifies intra-species kinetic balance. Desig-
nate this value as the equilibrium rate Req.

Section VIII concludes that all flows drive any system
toward kinetic balance. Once balanced, the independent
parameters describing the system must change for the
system to evolve further to a different equilibrium state.
Assume that this disruptive process occurs in two stages
in order to make analysis practical as well as intelligible:
First, particles thermalize quickly so that local parame-
ters deviate from the prior equilibrium value by ∆T , etc.
Second, these shifts drive particle transformations.

Assume, for clarity in this discussion, the typical case
that all participating species are in the classical regime.
The forward rate can then be written separating system
properties from the rate information:

Rforward = Ψforward

r∏
j=1

(
Nje

−ηj
)−xj

, (11)

defining the forward kinetic rate factor as

Ψforward ≡

Reactant
config.∑

i

Γi

r∏
j=1

−xj∏
m=1

e−ϵj,ij(m)/kBT . (12)

If the particle interaction model used to evaluate (5) does
not accurately estimate local clustering deviating from

system mean density, such as around ions, then a factor
may be inserted in Ψ to account for this effect. Modes
with high transition rate often group in a well-defined
energy range, which establishes the activation energy re-
quired for significant transformation rate. Transforma-
tion rate (11) then has the form of the empirical Arrhe-
nius and Eyring equations.
Factoring (9) similarly, (10) may be expressed as

r+s∏
j=1

(
Nje

−ηj
)xj

= K , (13)

defining the “rate quotient” specific to each transforma-
tion

K ≡ Ψforward

Ψreverse
. (14)

The rate quotient must not be confused with the stan-
dard reaction quotient, which contains no rate informa-
tion. Equation (13) contradicts the Second Law of ther-
modynamics because K ̸= 1 in complex systems [12, 20].
Consequently, dynamic balance can maintain coexist-
ing phases above their ground states, possibly producing
temporal oscillations under suitable conditions, such as
observed in “time crystals” [21–23].
The rate quotient tends to be weakly dependent on

temperature, density and pressure, because the activa-
tion energy cancels out. Note that the rate quotient is
not equal to one except in trivial cases, such as for a uni-
tary transformation within a single phase, when particles
of the same species simply exchange modes.
There may be more than one transformation occur-

ring at once, in which case distinguish each by index i.
Extrapolating the change in forward rate (11) from equi-
librium to first order yields

∆Rforward
i = Req

i

{
∆Ψforward

i

Ψforward
i

+

reactants∑
m

(−xim)

(
∆Nm

Nm
−∆ηm

)}
. (15)

The rate that particles of species j are produced by the
ith transformation is Ṅ trans

ij = xijR
net. The total pro-

duction rate due to all transformations is then

Ṅ trans
j =

trans∑
i

Req
i xij

∆Ki

Ki

−

all
species∑

m

[
trans∑

i

Req
i xijxim

](
∆Nm

Nm
−∆ηm

)
. (16)

The matrix in square brackets is symmetric. Therefore,
when the variation in rate quotient is negligible, there
are reciprocal relations between the rate that one species
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is produced by an excess of another (j ̸= k):

Ṅ trans
j

∆Nk
≈

[
trans∑

i

Req
i xijxik

]
∂ηj
∂Nk

=[
Trans.∑

i

Req
i xikxij

]
∂ηk
∂Nj

≈ Ṅ trans
k

∆Nj
, (17)

so long as the partition function is analytic, implying

∂ηj
∂Nk

∣∣∣∣
V

=
∂

∂Nk

(
∂ lnZ

∂Nj

∣∣∣∣
V

)
=

∂

∂Nj

(
∂ lnZ

∂Nk

∣∣∣∣
V

)
=

∂ηk
∂Nj

∣∣∣∣
V

. (18)

The PPL in (16) must be expanded in terms of the
independent parameters because it is not a directly mea-
surable or controllable property. (Actually, neither Z nor
PPL is a physical quantity.) While the direct expansion

∆ηj =
εj

kBT 2
∆T +

γpj
βTkBT

∆V

+

species∑
k

∂ηj
∂Nk

∣∣∣∣
V

∆Nk +
∂ηj
∂φ

∣∣∣∣
V

∆φ+ ·· (19)

is generally valid, virial particle models reveal the depen-
dence on number density nj = Nj/V :

∆Nj

Nj
−∆ηj =

∆nj

nj
−

species∑
k

∂ηj
∂nk

∣∣∣∣
V

∆nk|V

− εj
kBT 2

∆T − ∂ηj
∂φ

∣∣∣∣
V

∆φ− · · . (20)

Virial models, with general form ηj = ln[CjV ] +
fj(T, {nk}, φ, . . .), where Cj is a species specific constant,
ensure that no more than three phases can coexist, as ob-
served. The coefficients of expansion are defined as

∆V = V
(
α∆T − βT∆p+

∑
γpj∆Nj + ··

)
. (21)

In cases where pressure is measured or controlled as the
independent parameter instead of volume,

∆Nj

Nj
−∆ηj =

∆nj

nj

∣∣∣∣
p

−
species∑

k

∂ηj
∂nk

∣∣∣∣
p

(1−Nkγpk) ∆nk|p

− ε̂j
kBT 2

∆T +
V γpj
kBT

∆p− ∂ηj
∂φ

∣∣∣∣
p

∆φ− · · . (22)

Here ε̂ is the marginal particle energy at constant pres-
sure. The density dependence cancels out in pure sys-
tems because when temperature and pressure are con-
stant, then number density is too.

V. PARTICLE FLOW

Particle flow is essentially a unitary transformation
between spatially dislocated modes. Forward and re-
verse, in this context, refer to mode transitions across
an interface in the positive and negative directions. De-
fine two adjacent subsystems on either side of the in-
terface, each small enough to thermalize quickly into lo-
cal quasi-equilibrium while still satisfying the thermody-
namic limit. Let the interface be normal to the ẑ direc-
tion with subsystem a on the negative side and b on the
positive side. Net flow may be derived by extrapolation
if a and b represent the same phase. But if the interface
lies on a phase boundary, this process is treated by (16),
with r = s = 1.
From (8), the rate that particles transit the interface

is

Ṅa→b
j =

a modes∑
i

Nji

b modes∑
k

Γj,ik . (23)

The mode rate Γj,ik represents diffusive particle transfer
and reflects all geometrical constraints such as walls and
apertures at the interface. Ballistic particles rarely inter-
act as they pass through either subsystem and are better
treated separately in larger subsystems. Transition rates
vary with direction in anisotropic materials, and so des-

ignate aggregate rate Γ
(z)
j,i =

∑b modes
k Γj,ik by interface

orientation.
Net flux through interface area A is then

J
(z)
Nj =

1

A

(
Ṅa→b

j − Ṅ b→a
j

)
. (24)

When the interface is a phase boundary, regions a and
b represent different material phases, usually with dis-
tinct properties. Transfer across a phase boundary is
more consistently viewed as “particle exchange transfor-
mations” with net rate determined by the difference be-
tween (8) and (9) evaluated in each phase at their re-
spective parameter values. For example, evaporation and
condensation processes are the transformation and ex-
change of liquid and gas species of the same substance.
When regions a and b represent the same material

phase, the terms in (24) are related by Taylor expansion.
Setting wji = ϵji/kBT +Wj in (3), linear extrapolation
of each term from equilibrium produces

J
(z)
Nj ≈ − 1

A

eq modes∑
i

∆zΓ
(z)
j,i

ewji ± 1
−

Γ
(z)
j,i e

wji ∆zwji

(ewji ± 1)
2 . (25)

Here ∆zf is the difference in adjacent subsystems in the
positive z direction.
The sum of Nji over modes equals the subsystem pop-

ulation Nj in equilibrium. Label the sum over deriva-

tive distribution N
′

j =
∑

i e
wji/ (ewji ± 1)

2
, which, in

the quantum regime, selects fermion modes within kBT
of the Fermi energy or over weights low energy boson
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modes, and approaches Nj in the classical regime. De-
fine the weighted average transition rate over the normal
distribution as ⟨Γj⟩N ≡ (1/Nj)

∑
i Γj,i/ (e

wji ± 1), and
similarly over the derivative distribution ⟨··⟩N′ . Net flux
may then be expressed as

J
(z)
Nj ≈ − 1

A

(
Nj ⟨∆zΓ

(z)
j ⟩N −N

′

j⟨Γ
(z)
j ∆zwj⟩N′

)
. (26)

Define the equilibrium diffusion velocity v
(z)
Nj =

Lz⟨Γj⟩N, where Lz is the distance between subsystem
centers. Flux then is the product of equilibrium flux and
relative gradient in properties between subsystems:

J
(z)
Nj ≈ −njv

(z)
NjLz

(
⟨∂zΓ(z)

j ⟩N
⟨Γ(z)

j ⟩N
−

N
′

j

Nj

⟨Γ(z)
j ∂zwj⟩N′

⟨Γ(z)
j ⟩N

)
,

(27)
Differential notation here is understood to represent a
finite difference ∂ff = ∆zf/Lz.
Further define the mean energy of flowing particles

⟨ϵj⟩(z)N ≡ ⟨Γ(z)
j ϵj⟩N′/⟨Γ(z)

j ⟩N, and define the gradient in
mean energy of flowing particles similarly. The latter
right hand average in (27) may be expressed to first or-
der as

⟨Γ(z)
j ∂zwj⟩N′

⟨Γ(z)
j ⟩N

=
⟨∂zϵj⟩(z)N

kBT

−
⟨ϵj⟩(z)N

kBT

∂zT

T
+

⟨Γj⟩(z)N
′

⟨Γj⟩(z)N

∂zWj (28)

Equation (27) is the flux in the co-moving frame of
the material if the interface is stationary relative to the
modes. In equilibrium, bulk velocity is uniform and there
exist three principal axes about which modes are sym-
metric such that flux is parallel to the axes: Jco-moving

Nj =

x̂ J
(x)
Nj + ŷ J

(y)
Nj + ẑ J

(z)
Nj if {x̂, ŷ, ẑ} are the principal axes.

Recognizing the factor in parentheses in (27) as one com-
ponent of a vector, define the particle diffusivity tensor

↔
DNj ≡ x̂x̂v

(x)
Nj Lx + ŷŷv

(y)
NjLy + ẑẑv

(z)
NjLz . (29)

Flux then is

Jco-moving
Nj ≈ −nj

↔
DNj ·

x,y,z∑
k

k̂

(
⟨∂kΓ(k)

j ⟩N
⟨Γ(k)

j ⟩N
−

N
′

j

Nj

⟨Γ(k)
j ∂kwj⟩N′

⟨Γ(k)
j ⟩N

)
. (30)

Material may move locally with bulk velocity vj rela-
tive to an observer, who may also choose a system bound-
ary moving at velocity u. The boundary interface then
sweeps through the material with speed vj − u and the
designation of a and b modes in (23) changes with time.
Diffusive flux retains the same form but with effective dif-
fusion velocity vNj through the moving interface. Spa-
tially varying bulk velocity and strain between subsys-
tems produce second order effects. Therefore, to first

order, flux through a boundary in the observer’s frame is

Jboundary
Nj ≈ nj (vj − u) + Jco-moving

Nj

∣∣∣
vNj→vNj

. (31)

In the classical regime, the mean rate factors into par-
ticle partition and a kinetic rate factor analogous to (12),

⟨Γ(z)
j ⟩N ≈ e−ηjΨ

(z)
Nj , and ⟨ϵj⟩(z)N ≈ kBT

2∂T lnΨ
(z)
Nj . Flux

in the co-moving frame then may be expressed as

J
(z)
Nj ≈ −njv

(z)
NjLz

(
∂zΨ

(z)
Nj

Ψ
(z)
Nj

+
∂zNj

Nj
− ∂zηj

)
, (32)

and, in an isotropic material,

Jco-moving
Nj ≈ −njvNjL

(
∇ΨNj

ΨNj
+

∇Nj

Nj
−∇ηj

)
. (33)

The PPL expands in the same form as (19), (20) and
(22), except with the gradient operator ∇ replacing ∆.
This formula produces Fick’s laws and exhibits mu-

tual particle diffusion, which causes Brownian motion of
colloidal particles. Ohm’s law follows for an applied elec-
tric field E = −∇φ. The temperature gradient term
produces the Soret effect. The Seebeck effect appears
when a temperature gradient exists with an electric field,
qjJNj = σj(−∇φ− Sj∇T ) in an isotropic material. The
Seebeck coefficient then equals

Sj ≡
1

kBT 2

εj − ⟨ϵj⟩N
∂ηj/∂φ|V

. (34)

The first term in the numerator is due to increased num-
ber of modes to transition into, driving particles toward
higher temperature regions. The second term is due to in-
creased average particle speed with temperature, driving
particles toward lower temperature regions. Thermal dif-
fusion may flow with or against the temperature gradient,
depending on the relative strength of these two trends.
Many other thermodynamic effects occur between pairs
or even triplets of terms in (30).

VI. MOMENTUM FLOW

Momentum flows with particles and by remote inter-
action mediated by force fields. Distinguish these as con-
vective and conductive flow, respectively. The total rate
of momentum flow through an interface between subsys-
tems a and b is then

Π̇a→b = Π̇a→b
conv + Π̇a→b

cond . (35)

The convective component includes all particles tran-
siting the interface in the positive direction. The mean
rate of transit in the observer’s frame is

ẑ · (vj − u) (Nj/Lz) +

a
modes∑

i

NjiΓj,i , (36)
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with interface axis ẑ. Define the mode diffusion velocity
ẑ · va→b

Nj,i = LzΓj,i. Mean mechanical momentum flow for
particles of rest mass mj is then

Π̇a→b
conv =

species∑
j

a
modes∑

i

Nji

[
ẑ ·
(
vj − u+ va→b

Nj,i

)
/Lz

]
× γj,imj

(
vj + va→b

Nj,i

)
. (37)

Lorentz factor γj,i significantly complicates further re-
duction for a relativistic range of mode diffusion veloc-
ity; the non-relativistic limit γj,i → 1 is assumed here
to simplify the following derivation. The mode sum-
mation is limited here to positive net velocity particles,
ẑ ·
(
vj − u+ va→b

Nj,i

)
> 0. This vector is a projection of a

rank two tensor:

Π̇a→b
conv = Az ẑ ·

species∑
j

mjnaj

{
(vj − u)vj

+ va→b
Nj vj + (vj − u)va→b

Nj +
↔
V a→b

j

}
. (38)

The effective diffusion velocity is va→b
Nj =

(1/Naj)
∑

i Njiv
a→b
Nj,i and diffusion velocity tensor

defined as

↔
V a→b

j ≡ 1

Naj

a
modes∑

i

Nji v
a→b
Nj,i v

a→b
Nj,i , (39)

again with the positive net velocity condition.
By Newton’s third law of motion, any transition chang-

ing a particle’s momentum occurs with another transi-
tion producing equal and opposite momentum change.
The conductive component of momentum flow represents
pairs of transitions occurring on either side of the inter-
face:

Π̇a→b
cond =

species∑
j,j′

a
modes∑
i,k

b
modes∑
l,m

Nji Nj′ l

×Πj,ik Γjj′ ,ik,lm . (40)

Here Γjj′ ,ik,lm is the probability per unit time for such
transition pairs to occur from mode i to mode k, for one
of the particles of species j, and mode l to mode m for
the other of species j

′
. The difference in momentum of a

particle in mode k to one in mode i is Πik. This result
includes long range “body” forces Fbody and short range
“contact” forces proportional to the interface area. High
frequency body forces represent internal radiant emission
and absorption, even if corresponding outside events do
not occur during a measurement. Let Ja→b

Π be the mo-
mentum flow per unit interface of all short range interac-
tions in (40). Further define the set of rank two tensors

J
↔

Π,j such that J
(n̂)
Π = n̂ ·

∑
j J
↔

Π,j for interface axis n̂.
Force on a system is related to the rate of inward mo-

mentum flow through its boundary. Representing inte-
gral notation for the sum of finite interface area elements

of subsystems inside and outside the boundary, total in-
ward flow is

Π̇ = Fbody +

∫
V

dA (−n̂) ·
species∑

j

{
mjnj

[
(vj − u)vj

+ vNjvj + (vj − u)vNj +
↔
V j

]
+ J

↔
Π,j

}
. (41)

Normal vector n̂ to the local surface points outward by
convention. The diffusion velocity and tensors are evalu-
ated with subsystem a outside and b inside.
The classical picture, neglecting microscopic activity,

assumes material moves as a laminar field. There is no
diffusion in this case (vNj ,

↔
V j , J

↔
Π,j are zero) and

Π̇ = ∂t

∫
V

dV

species∑
j

mjnjvj . (42)

In this case, (41) reduces to the Euler equation of motion
with the aid of Reynold’s transport and divergence the-
orems. The Euler equation is Galilean invariant because
precise cancellation occurs between acceleration and con-
vection terms, and invariant gravity and electromagnetic
fields exert body forces.
According to Euler, the force on a volume is the to-

tal momentum inflow less that due to laminar bulk flow.
Therefore, define the thermodynamic force as (41) less
the first (macroscopic) term:

FTD ≡ Fbody +

∫
V

dA n̂ · σ(r, t) , (43)

with stress tensor is defined as

σ (r, t) ≡ −
species∑

j

{
mjnj

[
vNjvj

+ (vj − u)vNj +
↔
V j

]
+ J

↔
Π,j

}
. (44)

The latter term in (43) evidently is the surface force. The
thermodynamic equation of motion,

Π̇+

∫
V

dA n̂ ·
∑
j

mjnj (vj − u)vj = FTD , (45)

allows an observer unaware of microscopic activity to de-
termine the acceleration of a body of material.

The left side of (45) is not Galilean invariant because
the diffusive component does not cancel completely. Nei-
ther is thermodynamic force, because the first stress term
depends on the absolute bulk velocity in the observer
frame, while all other terms involve relative position and
velocity. The apparent contradiction produced by insert-
ing classical friction in the Euler equation is resolved by
this quantum approach. Thermodynamic force must be
computed in the frame of the observer.
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The stress tensor pertains to the local conditions of a
subsystem in quasi-equilibrium. Mode structure is sensi-
tive to strain and strain rate relative to neighboring sub-
systems. Consequently, transition rate and displacement
are as well. Extrapolating diffusion velocity to first order
in strain and strain rate yields a general form of stress
encompassing the entire range of materials from Newto-
nian fluid to elasticoviscous to viscoelastic to Hookean
solid, depending on the relative strengths of the extrap-
olation coefficients. Mobile particle species contribute to
viscosity through convective and conductive momentum
exchange. Classical friction is the conductive momentum
exchange between adjacent regions with different bulk
velocity, and always converts macroscopic kinetic energy
into microscopic motion.

Opposing forces balance everywhere in equilibrium, re-
quiring all net diffusive flow to be zero. Viscosity damps
out spatial variation in bulk velocity as well. The stress
tensor is then symmetric, implying that there is a prin-
cipal coordinate system in which the tensor is diagonal.
Stress in a stationary system (vj = u = 0, i.e. the co-
moving frame) in equilibrium is

σeq = −
species∑

j

{
mjnj

x,y,z∑
k

k̂k̂

[(
v
(k)
Nj

)2
+ k̂ · J

↔
Π,j · k̂

]}
.

(46)
The double bar accent indicates RMS value of mode
diffusion velocities. Mechanical pressure, defined as
−Trace [σ] /3, equals thermodynamic pressure in equilib-

rium. An ideal gas has no long range forces (J
↔

Π,j = 0)
and so thermodynamic pressure reduces to

p =

species∑
j

njmj

(
vNj

)2
=

species∑
j

njkBT , (47)

by the equipartition theorem or by direct summation over
modes.

Both terms in (35) involve the mode population and
therefore may be separated into mean local property val-
ues and rate factor, similar to the treatment of reactions
and particle flow, and extrapolated in terms of the inde-
pendent parameters. Various thermal-mechanical effects,
such as expansion, piezoelectricity, electrostriction and
magnetostriction, are represented by the extrapolation
coefficients.

VII. ENERGY FLOW

Energy also flows convectively, carried with particles,
and conductively, through work done by field forces.
Again, flow across a phase boundary requires evaluation
of (49) and (54) in each phase. This discussion otherwise
assumes the same material phase exists in both a and b.
Convective energy flow carried by the jth species

through an interface from subsystem a to subsystem b

is

Ėa→b
conv,j =

a
modes∑

i

ϵjiNji

b
modes∑

k

Γj,ik . (48)

Employing the definitions stated before (26) and (28),
convective energy flux may be expressed as

Ja→b
Econv,j ≡

1

Az
Ėa→b

conv,j = najv
a→b
Nj ⟨ϵj⟩a→b

N . (49)

Net flux may be extrapolated from equilibrium as

J
co-moving(z)
Econv,j ≈ ⟨ϵj⟩(z)N J

co-moving(z)
Nj − njv

(z)
NjLz∂z⟨ϵj⟩(z)N ẑ ,

(50)
presuming that the interface is oriented to the ẑ princi-
pal axis. Otherwise, when the interface coincides with
a phase boundary, this process should be analyzed as a
particle exchange transformation in Sec. V.
In an observer’s frame, the interface sweeps over energy

density U/V = ∂V U +
∑

j εjnj , with net flux of

Jboundary
Econv ≈ (∂V U) (v − u) +

species∑
j

Jboundary
Qconv,j

+
(
ε0j + ϵmacro

j

)
Jboundary
Nj − nj

↔
DNj · ∇ϵmacro

j . (51)

Convective heat flux is distinguished by subtracting the
mode independent formation and macroscopic ϵmacro

j

components of mode energy:

Jboundary
Qconv,j ≡

x,y,z∑
k

{(
⟨ϵj⟩(k)N − ε0j − ϵmacro

j

)
J
boundary(k)
Nj

+
[(

εj − ⟨ϵj⟩(k)N

)
nj k̂ · (v − u)

− njv
(k)
NjLk∂k

(
⟨ϵj⟩(k)N − ϵmacro

j

)]
k̂

}
.

(52)

Conductive energy flow Ėa→b
cond from subsystem a to b

may be expressed in the same form as (40) except that
the difference in the mode energy (ϵjk − ϵji) replaces the
momentum change Πj,ik between transition modes. Sim-
ilarly separate the contribution from long range interac-
tion from short range exchange proportional to interface
area. It is convenient also to distinguish high frequency
long range energy exchange as radiant emission and ab-
sorption. Work done by low frequency applied fields con-
verts the field potential energy within the system bound-
ary into particle motion. The short range contribution
represents the conductive part of heat flux,

species∑
j

Ja→b
Qcond,j ≡ (1/Az) Ė

a→b
cond

∣∣∣
contact

, (53)

because formation and macroscopic energy cancel in ϵjk−
ϵji, leaving only the microscopic energy difference.
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Factor this flux into heat density and mean heat con-
duction velocity:

Ja→b
Qcond,j =

Qa

V
va→b
Qj . (54)

Flux through an interface aligned with a principal axis is
parallel to that axis due to symmetry in mode transitions,
the same as for particle and momentum flux. Net flux,
when the a–b interface aligns with principal axis ẑ, may
be extrapolated to first order from equilibrium, indicated
by the single bar accent:

J
(z)
Qcond,j = ẑ

(
Ja→b
Qcond,j − Jb→a

Qcond,j

)
≈ −ẑ

[
v
(z)
QjLz∂z

(
Q

V

)
+

(
Q

V

)
Lz∂zv

(z)
Qj

]
.
(55)

Define the rank two thermal diffusivity tensor analo-
gous to the particle diffusivity tensor (29):

↔
DQj ≡ x̂x̂ v

(x)
QjLx + ŷŷ v

(y)
QjLy + ẑẑ v

(z)
QjLz . (56)

Conductive heat flux along all three principal axes may
then be expressed as

JQcond,j ≈ −
↔
DQj · ∇

(
Q

V

)
−
(
Q

V

)(
x̂Lx∂xv

(x)
Qj + ŷLy∂yv

(y)
Qj + ẑLz∂zv

(z)
Qj

)
. (57)

The heat diffusion velocity tends to be relatively insen-
sitive to system parameters so that flux is dominated by
heat density gradient, which expands as

∇
(
Q

V

)
=

(
CV

V

)
∇T +

∑
k

(εk − ε0k)∇nk

−∇
(
Emacro

V

)
+

1

V

∂U

∂φ

∣∣∣∣
V

∇φ+ · · . (58)

Equation (57) includes Fourier’s law and all other first
order effects related to conductive heat flow through a
single material phase.

Many applications, such as continuous chemical pro-
cessing, plumbing, electronics and airfoil design, involve
net flow in a non-equilibrium steady state. In this case,
no parameters change in time for any single-phase subsys-
tem. For example, in an isotropic material, (7) becomes

0 = ∂tQoutside + ∂tE
inflow
macro +

∑
j

ε0j ∆Noutside
j

≈ ∂tQcond − V∇ ·
∑
j

⟨ϵj⟩NJboundary
Nj .

(59)

Therefore, conductive heat outflow must balance net in-
flow of particle energy. No heat is generated or absorbed
by a steady flow of particles unless the mean energy of
the flowing particles changes. Such change might be due

to a temperature gradient, known as the Thomson ef-
fect, or other parameter gradients, or due to flow from
one phase to another, known as the Peltier effect when
the particle flow is electric current.
To analyze the latter case, define a system enclosing a

junction between two phases a and b of conductive mate-
rial surrounded by a heat reservoir. Let flow be uniaxial,
for simple description, and A be the system cross-section.
Steady state conductive heat flow from the reservoir is

∂tQcond ≈ A
∑
j

(
⟨ϵbj⟩N − ⟨ϵaj⟩N

)
Jboundary
Nj . (60)

This result obscures that flow occurs in three stages: (1)
Flow into the system a boundary contributes excess heat
to the system equal to A

∑
j

(
⟨ϵaj⟩N − εaj

)
JNj as the

incoming particles thermalize. (2) Flow across the junc-
tion is a particle transformation contributing excess la-
tent energy A

∑
j (εbj − εaj) JNj as particles from a ther-

malize in b. (3) Flow out of b leaves excess energy of
A
∑

j

(
εbj − ⟨ϵbj⟩N

)
JNj . Assuming that all flow is elec-

tric current Ij = AqjJNj driven by a constant applied
field, heat flow from the reservoir may be expressed as

∂tQcond ≈
species∑

j

(
Πbj +

εbj − εaj
qj

−Πaj

)
Ij , (61)

The first and third stages are characteristic of each phase.
Define the Peltier coefficient as Πj ≡

(
⟨ϵj⟩N − εj

)
/qj .

Note that state energy Es ≈ E
(φ=0)
s +Njqjφ when the

electric field driving the particle flow is weak. There is
a thermoelectric reciprocal relation between Peltier and
Seebeck effects in this weak field limit:

Sj =
εj − ⟨ϵj⟩N

kBT 2 ∂φηj |V
≈

⟨ϵj⟩N − εj

qjT
=

Πj

T
. (62)

The Thomson coefficient Kj = ∂TΠj −Sj∂φΠj is related
to these two effects when a temperature gradient also
induces an electric potential gradient.

VIII. PHASE STABILITY

From the previous sections, diffusion is an inherently
local phenomenon. Energy, momentum and particles dif-
fuse continually. Macroscopic conditions in the thermo-
dynamic limit stabilize when counter-propagating flows
are equal, defining a stable material phase in equilibrium.
Transport equations (16), (31), (45), (51) and (57) all

exhibit stabilizing influence on equilibrium states. De-
viation of any independent parameter from the current
equilibrium value produces flows toward recovering that
state, countering the disruption. Le Chatelier’s principle
is one version of this general conclusion.
Diffusion is a response to all existing parameter gra-

dients, which can produce uncommon results. For ex-
ample, energy may flow with a temperature gradient in
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the presence of a strong applied field, contradicting Sadi
Carnot’s founding claim that heat always flows from hot-
ter to colder regions. Instead, the statement “energy,
momentum and particles diffuse toward a steady state”
captures the essence of thermodynamics.

When two phases can coexist, a system typically
evolves to the more stable phase. However, systems may
be superheated or supercooled if prepared under unusu-
ally quiet conditions. Fluctuation in local energy density
then can trigger rapid transition to a more stable state
consistent with system parameters. Otherwise, fluctua-
tions play no role in determining mean flows or an equi-
librium state.

IX. CONCLUSIONS

General, yet concise, transport equations are derived
here by recognizing all forms of stable particle as dis-
tinct species. This allows consistent quantum mechan-
ical treatment of diffusion between species and regions
without delving into specific particle interaction models.
Doing so also answers key nagging questions posed in the
introduction.

The condition of uncorrelated mode populations is suf-
ficient to show that energy, momentum and particles
always diffuse on average toward a steady equilibrium
state. Net flows tend to disperse high mode concentra-
tion, often described as dissipation. Gradients in system
parameters produce a variety of thermodynamic effects,
sometimes at odds with common experience in extreme
cases. We naturally infer forward progress from diffusion.
This behavior appears spontaneous and irreversible to an
observer unaware of microscopic activity.

The thermodynamic equation of motion is not in-
variant under Galilean transformations and therefore
presents no contradiction between observers. Determin-
istic Lagrangian dynamics “emerge” when diffusion is in-
significant. This is typically true in classical cases in-
volving a few bodies with negligible friction and internal
activity. Otherwise, diffusion can be suppressed in spe-
cially designed apparatus limiting all but a few mode
transition rates, such as by reducing ambient interaction
in a vacuum.

Observers moving fast relative to each other may be
able to infer the equilibrium distribution with four tem-
perature parameters and transition rates from the other
through Lorentz transformation. Diffusion must still be
evaluated in the observer’s reference frame through the
thermodynamic equation of motion (45).

Diffusion, with an apparent “arrow of time,” occurs
because there are more modes that a particle may tran-

sition into than those consistent with the prior state of
the system. What we would recognize as “backwards”
evolution becomes less likely as the system complexity
increases. This conclusion holds true even if antiparti-
cles do travel in the opposite direction of time [24]; they
diffuse just as we expect for normal particles.
Diffusion depends only on local conditions. A global

condition is not required to define equilibrium, and would
conflict with local quantum mechanical transport. Fur-
thermore, these transport equations describe behavior
that transitions continuously, as complexity increases,
from random walk in simple systems to diffusion in the
thermodynamic limit. There is no distinction between
chemical and biological function in modal analysis. Ac-
tive agents are accounted for naturally in the mode spec-
trum. No additional assumption, reference to cyclic pro-
cesses and ensembles, interpretation of probability, or
quantity, such as entropy and information, is needed to
explain what we observe.
Reciprocal relations exist between any two or more pa-

rameters when the corresponding flows share mutual dif-
fusion velocities and the partition function is analytic.
These relations hold, however, only in the limit of weak
disruption and when the associated kinetic rate quotient
is practically constant.
Fluctuations typically average out over a measurement

and are inconsequential to thermodynamic properties
and transport, apart from triggering phase transitions
and causing random walk in particle trajectories. To first
order, mean flows are driven by macroscopic mean prop-
erty gradients.
The rate of transformation and flow equals the mode

transition rate and population over the entire mode spec-
trum. Mode spectrum and transition rates are sensitive
to local material structure. This sensitivity produces hys-
teresis and anomalous behavior, such as the Mpemba
effect, in which the same system prepared differently
evolves differently under similar macroscopic conditions.
This new approach also shifts our philosophical view

of natural processes. Equilibrium is balance of flows. All
systems evolve toward balance, not disorder, as the Sec-
ond Law is usually interpreted. Balance can produce
complicated structures. Evolution of life then is highly
likely under suitable conditions.
These transport equations match known empirical laws

under specific conditions. Consequently, this work es-
tablishes a concrete foundation for all physical sciences
without disrupting current applied theory based on these
laws. This foundation assists further development of each
field, particularly in areas between disciplines, by provid-
ing common principles, methods and language for anal-
ysis.
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