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A single mechanism, endemic to the standard model of physics, is proposed to explain wave-
function collapse, classical motion, dissipation, equilibration, and the transition from pure quantum
mechanics through open system decoherence to the natural regime. Spontaneous events in the
neighborhood of a particle disrupts correlation such that large many-particle states do not persist
and each particle collapses to a stable mode of motion established by its neighbors. These events are
the source of thermal fluctuation and drive diffusion. Consequently, evolution is not deterministic,
unitary or classically conservative; diffusion toward a steady state occurs incessantly in every sys-
tem of particles, though slowed under unnatural experimental conditions that suppress these events.
Mean properties of a system evolve as particles jump between single-particle modes, producing ob-
served transport laws and equilibrium properties without additional postulate or empirical factors.
These modes are localized in dense material, yielding classical characteristics. Boltzmann’s equal
probability postulate is valid only when comparing results of nonrelativistic observers.

Keywords: wavefunction collapse, state reduction, dissipation, equilibration, quantum decoherence,
quantum-classical transition, quantum chaos, quantum thermodynamics, eigenstate thermalization, con-
tinuous state localization, multi-particle localization, relativistic thermodynamics

I. INTRODUCTION

Five observed processes appear at odds with quantum
mechanics: decoherence, wavefunction collapse, classical
motion, dissipation and equilibration. These anomalous
phenomena are interrelated. Explanation of one affects
how the others can be understood. One consistent theory
is needed to resolve them all.

The standard model of physics (SMP) has developed
over centuries of observation. Carefully controlled exper-
iments reveal conservative fundamental physical forces
as well as random spontaneous emission. Between spon-
taneous events within a well isolated system, such that
spontaneous events among the surrounding particles do
not substantially alter the potential felt by a system par-
ticle, internal microscopic motion is oscillatory, evolving
by unitary time transformation, with physical variables
represented by hermitian operators in a linear and deter-
ministic Lagrangian equation of motion with time rever-
sal symmetry.

Absent spontaneous emission, an isolated system re-
mains coherent. In this case, system state trajectories do
not mix or diffuse, even in the limit of chaotic sensitivity,
despite the appearance of random spatial distribution.
An ensemble of identical systems would always be in the
same state; every term in the ensemble density matrix
maintains constant amplitude. Alternatively, if initial
ensemble conditions are not uniform, then the amplitude
of individual systems diverge, and the ensemble loses
phase coherence, represented by decay of off-diagonal mo-
ment amplitudes in the ensemble density matrix. How-
ever, any initial state will eventually repeat, according
to Poincare’s recurrence theorem [1]. Ensemble coher-
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ence may decay for some period only to recover later.
Even when this recurrence time is extremely long, half of
a randomly prepared ensemble would exhibit growth in
coherence while the other half exhibits decay. Further-
more, full phase coherence can be restored in principle,
as demonstrated by spin and photon echoes [2, 3].
Practical control is limited, though, and it may not be

feasible to precisely reverse highly sensitive interaction,
such as direct collisions. These cases appear effectively
random and cause practically irreversible decoherence,
such as diminishing strength of spin and photon echoes
due to increasing rate of collisions. Generally, random
events, whether apparently or fundamentally stochastic
as in spontaneous emission, diminish measured moments
irreversibly. Only coherent interaction, such as with a
laser beam, can produce a quantum state with a signifi-
cant superposition of modes.
Quantum mechanics theory does not address why, in

practice, every measurement produces one of a discrete
set of possible values. The so-called measurement prob-
lem is that the system state apparently reduces, or col-
lapses, during the detection process from a superposition
to one of the eigenmodes of the operator representing the
detector. Even though the system state may be known,
measurement produces an uncertain result because wave-
functions occupy finite parameter space.
Neither does quantum mechanics explain why all sys-

tems are observed to equilibrate given enough time, los-
ing coherence in the process. Dissipation, indicated by
irreversible change in diagonal elements of the ensem-
ble density matrix, thwarts oscillation, in glaring contra-
diction with conservative mechanics. The generally ac-
cepted reason for this universal tendency is that a non-
mechanical property, entropy, always grows to a maxi-
mum in equilibrium, postulated in the Second Law of
thermodynamics. Many mechanisms and methods have
been explored to explain why dissipation occurs, such
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as classical dissipation functions [4], molecular chaos and
coarse graining [5], inherent dynamic probability of states
[6, 7], apparent irreversibility [8], subjective probability
[9], many worlds [10], quantum Darwinism [11], quan-
tum chaos [12, 13], non-Hermitian operators [14], and
new stochastic interaction [15]. All of these proposals
yield hints about what might be occurring. But each one
relies variously on novel mechanisms outside of the SMP
or effects assumed without consistent implementation or
restricted to ideal gas and microsystems or on ensemble
averaging, along with other assumptions. In each case,
lack of derivation from SMP principles pushes the dissi-
pation problem under different proverbial rugs.

Mark Srednicki concludes his paper on quantum chaos
with key insight: “More generally, in quantum mechan-
ics, where time evolution is always linear and therefore
essentially trivial, the only place to encode the complex-
ities of the classical limit is in the energy eigenfunctions:
that is where quantum chaos, like thermal behavior, must
be sought.” [12, p. 23]. I argue here that the source of
quantum chaos has a more profound effect on the eigen-
states themselves than considered to date, which opens
an avenue to develop a complete theory of thermal dy-
namics.

The basic issue is that standard quantum mechanical
analysis neglects fluctuation in the potential exerted by
neighboring particles. This omission is tantamount to
the principle of virtual work founding Lagrangian me-
chanics. This principle assumes that microscopic forces
always balance so that they do zero net work on a par-
ticle over any time interval [4]. It is a necessary ap-
proximation for deriving Lagrangian equations of motion,
which are conservative and time-symmetric as a result.
Adding phenomenological dissipative terms, such as non-
hermitian and stochastic operators in quantum mechan-
ics or Rayleigh’s dissipation function to the Lagrangian
function, may suffice for estimating the trajectory of the
microsystem or macroscopic object of interest, respec-
tively. Such added terms are based on observed “natu-
ral laws” how the environment affects the system, with-
out regard how the environment is affected in return. In
which case, energy and momentum flow must be assumed
to balance in some unspecified manner. These theories
may serve a specific purpose but are incomplete.

After discussing current efforts, this paper proposes
that spontaneous events dominate dynamics in complex
systems under natural conditions and provide an endemic
mechanism to explain the observed transition from quan-
tum to classical regime as systems grow in complexity
and density. A second paper shows how this mechanism
causes diffusion and dissipative flow [16].

II. DECOHERENCE, REDUCTION AND
EIGENSTATE THERMALIZATION

Practical ability to trap and control microsystems,
having few active degrees of freedom, allows study of the

transition from quantum to classical regimes by coupling
a microsystem to another subsystem of greater complex-
ity, i.e. more active degrees of freedom, usually called the
environment in this context [17]. These experiments in-
spired open quantum system analysis to understand the
repercussions of relaxing the pure quantum condition of
isolation [18–20]. Two recent theories have garnered in-
tense interest: Quantum decoherence theory (QDT) and
the eigenstate thermalization hypothesis (ETH).

Quantum entanglement develops on interaction be-
tween any two arbitrarily defined subsystems. When an
isolated system is two coupled trapped ions, the state of
each ion oscillates as energy is transferred from one to
the other and back without loss of coherence. Greater
complexity of either subsystem obscures this flow. From
a coherent initial state, one may be said to cause deco-
herence in the other, due to entanglement, at a rate that
increases with system complexity. Subsystem coherence
appears to oscillate over the recurrence time period.

QDT describes evolution of a microsystem weakly cou-
pled to its highly complex environment by unitary en-
tanglement between system and environment [21]. This
scenario assumes that no spontaneous or effectively ran-
dom events occur throughout the entire system, or more
practically that an apparatus suppresses such events dur-
ing an experiment. The coupling operator establishes an
eigenbasis on the system. Each eigen-component of the
system state independently entangles with an environ-
ment state. Given zero initial correlation between sys-
tem and environment, these components tend to diverge
from each other in the vast parameter space of the en-
vironment, damping all interference terms in observable
variable expectation values of the microsystem, after av-
eraging over all possible states of the environment. This
result is irreversible because dephasing occurs in the en-
tangled components of the uncontrollable environment,
unlike the dephasing mechanisms in spin echoes, for in-
stance. Therefore, on average, the microsystem appears
to evolve in a nonunitary manner to a classical ensem-
ble of pure states over an interval, called the decoherence
time, which shrinks with increasing complexity of the
microsystem and environment and the coupling between
them. In effect, the environment continually monitors
the microsystem like a measurement device.

There are several issues with QDT: (1) The entire sys-
tem motion is unitary and oscillatory, implying that at
some point coherence grows and the initial state eventu-
ally recurs. Decoherence occurs with certainty only if the
initial state is maximally coherent. Any other initial state
of partial coherence can progress to higher coherence or
lower, contrary to evidence. This is the same issue faced
by Boltzmann’s H-Theorem [5, Sec. 4.5]. Even if an en-
semble distribution favors decoherence, some fraction of
systems still would contradict experience. (2) It is not ev-
ident how initial disentanglement can be prepared in the
QDT model, unless it is also assumed that a thermalized
microsystem state is unentangled. But this claim would
contradict the QDT premise that thermal properties re-
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flect rampant entanglement. (3) QDT assumes that each
subsystem is described by independent complete sets of
eigenmodes so that averaging over environment states is
unambiguous. Coupling would have to be so weak that
interaction may be treated as a perturbation. This sepa-
ration may be reasonable for microsystems but does not
extend to more complex systems of interest. (4) QDT
presumes a projective measurement process, i.e. reduc-
tion or collapse, of environment states under observation.
It is not evident why reduction should occur in one sub-
system but not the other, particularly because bisecting
a system is theoretically arbitrary in a comprehensive
theory. Therefore, QDT is practically limited to cases
coupling a highly complex environment to a simple, low-
energy microsystem that is not measured directly during
an experiment, the cases for which it was developed.

The connection with macroscopic thermodynamics in
isolated systems has been investigated most extensively
through the ETH, which rests on the notion of quantum
chaos: High energy eignstates of systems that exhibit
classical chaos tend to be fairly equally separated, cor-
responding to divergent trajectories as a key feature of
classical chaos [13]. Such spacing resembles the eigen-
state distribution of random matrix ensembles [22]. By
Berry’s conjecture, an ensemble of systems exhibits a
microcanonical distribution if the ensemble is randomly
distributed over a set of energy eigenstates, defined as
plane wave superpositions with a specific total energy
[23]. Observable ensemble expectation values then ap-
pear to thermalize due to dephasing of the off-diagonal
elements of the observable operator and equal weighting
of the eigenstates.

Even though dephasing is a unitary process in the
ETH, the ensemble average changes irreversibly due to
the random initial Berry condition. System processes are
modeled as unitary dephasing intervals interspersed with
random “quenches” caused by sudden shifts in one or
more system parameters. This model matches the quasi-
static ideal gas results in Classical Thermodynamics and
Statistical Mechanics. The standard thermodynamic re-
lations follow from associating eigenstate changing pro-
cesses with entropy change and eigenstate maintaining
processes with external work.

While these results are encouraging, there are issues
with ETH to resolve: (1) Berry’s conjecture describes an
uncorrelated “energy ensemble” for each energy eigen-
value, which exhibits statistics of the microcanonical en-
semble and is therefore fully thermalized. For example,
this model matches the distribution of measured energy
level spacing in thermalized nuclei [22]. In other words,
the ETH is effectively circular by assuming a priori that
each energy eigenstate is a thermalized ensemble with-
out explaining how unitary evolution produces an energy
ensemble. (2) Only the ensemble average exhibits irre-
versible thermal characteristics, contrary to observation
of equilibration in every complex system. The typicality
argument, that systems in a typical initial state evolves
like the ensemble, doesn’t suffice because, while most

equilibrium states fall in a narrow range, the theory aims
to understand the thermalization process of the atypical
non-equilibrium states. (3) A critical assumption in sta-
tistical mechanics theory, also employed in ETH, is equal-
ity between the long time average of unitary evolution of
a single system and the average over a presumed energy
ensemble. This may be reasonably close in equilibrium,
even though ergodic theorem has not been proven gener-
ally, but there is no supporting evidence that this equality
holds out of equilibrium. (4) Quenches are non-unitary
processes. No internal source of quenches is allowed in
ETH, which is logical because a system cannot quench
itself, otherwise motion could be perpetual. To be con-
sistent, quenches must originate outside of the universe.
They somehow disturb neither the perfect coherence of
system eigenstates nor the perfect incoherence of the en-
ergy ensemble. No mechanism is identified. Like QDT,
ETH is focused on practical microsystem analysis rather
than comprehensive description of system and environ-
ment. (5) Berry’s conjecture is limited to the low den-
sity and high energy regime when particle wavelengths
are small enough to react to chaos-inducing features in
the potential profile and localized enough to move ran-
domly. It is not evident if it applies to dense or very low
energy systems, the primary focus of current research.
(6) Each combination of quench and unitary dephasing
process projects an ensemble onto a diagonal density ma-
trix. Evolution by a sequence of projections produces ris-
ing entropy, and the standard thermodynamic relations,
for the same reason that artificially imposed molecular
chaos and coarse-graining breaks unitary time symmetry
in Boltzmann’s H-Theorem. (7) Ultimately, ETH relies
on state reduction to produce thermal behavior because
a diagonal density matrix is interpreted as a statistical
mixture of systems in a pure eigenstate, rather than de-
phasing of superposition states.

Both QDT and ETH then must explain reduction to
be valid. In order to resolve the measurement problem,
a quantum equation of motion must include both non-
linear and stochastic interaction in order to cause reduc-
tion [15]. Current theories designed to induce reduction
augment the Schrödinger equation with new mechanisms
to satisfy this condition. One model called continuous
spontaneous localization (CSL) in Ref. [15] mimics both
quantum and classical regimes, for select values of model
parameters, by assuming that a new interaction generates
energy with finite Gaussian spatial profile and stochasti-
cally varying strength. (CSL is distinct from Anderson
localization of multi-particle coherent states caused by
interference from spatial fluctuation in media [24].) This
interaction in the linear Schrödinger equation causes the
wavefunction norm to shift in time. The Born rule re-
quires that the wavefunction should be renormalized to
the “physical” probability, which produces a nonlinear
“physical” Schrödinger equation with Hamiltonian de-
pendent on the current state. The CSL model prefers
the position basis in order to assure that macroscopic
objects do not spread noticeably or exist in two places
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simultaneously. This localization process is not in itself a
measurement, though the sensing process in living tissue
provides the conditions for reduction and our observation
of classical behavior.

While the CSL model yields outcomes consistent with
our experience for select parameter values, some un-
known new mechanism drives the localizing stochastic
process of every particle independently of surrounding
material. Key questions are how such a ubiquitous inter-
action fits consistently with the SMP, and why such an
interaction has not been identified yet? The simplest ex-
planation would be that the mechanism is already present
in the SMP.

III. NATURAL CONDITIONS

Traditional arguments about how quantum decoher-
ence and dissipation and the classical limit occur have
generally assumed that system eigenstates always exist
in complete form. This is reasonable if the system is con-
fined by steady boundaries and coupling is weak enough
to neglect modes spanning the environment as well. Sys-
tem modes are then independent of what happens out-
side. Entanglement appears as correlated amplitudes of
independent sets of modes. Yet such constraint only al-
lows limited conditional conclusions.

How do normal modes of motion form in the first place?
Stable modes do not exist in empty space and conse-
quently there is no a priori preferred basis. Eigenmodes
in principle exist only for eternally constant conditions
and so are imaginary mathematical tools. Mode forma-
tion must be dynamic between these two cases. Conven-
tional eigenmode expansion analysis neglects the transi-
tory periods before modes are well established by inter-
ference. This neglect, in effect, precludes dissipation.

Consider the transition when a particle enters an
empty reflective cavity through a narrow port. The par-
ticle’s wavefunction expands immediately on entering the
cavity as if in free space according to Schrödinger’s equa-
tion. Cavity walls do not affect the wavefunction until the
leading wave front hits a boundary. Overlapping reflected
wavelets that interfere constructively eventually form sta-
ble, persistent modes after many round trips of the wave
fronts. Energy, momentum and other properties are con-
served through interference. Any waves that interfere de-
structively cannot maintain finite amplitude within the
cavity, indicating that the particle leaks out through the
port. A combination of these cases is an entangled state
until reduced to one or the other. If the entrance port
is subsequently blocked, and absent absorption and fluc-
tuations in the walls, the particle would persist in a su-
perposition of stable modes that asymptotically approach
eigenfunctions satisfying the cavity boundary conditions.

Further consider the same situation with interior ele-
ments as well. There is no physical distinction between
material within the cavity walls and any material that
resides inside. Particles penetrate and reflect from ma-

terial as a consequence of interference. The notion of
“cavity” itself is a convenient construct to simplify the
action of particles making up the cavity walls. Any ma-
terial inside also causes diffraction by interference, which
alters the stable modes. (Any absorption renders modes
unstable and transitory.) When sufficiently dense, inte-
rior material effectively obscures the cavity walls. Stable
modes then form by reflection from this nearer mate-
rial, establishing the mode boundary conditions. More
distant material affects mode structure only when any
intervening dense material is stable and ordered enough
such that distant reflection contributes significantly to
overall interference, such as for conduction electrons in a
crystal lattice.

This view accounts for all scale and type of “cavity,”
from atomic structure to the free space limit. It describes
the transition when a particle enters a new environment
or its environment evolves. If this transition is slow com-
pared to mode formation, then the particle state adia-
batically follows as the modes adapt. If the transition is
comparable to or faster than mode evolution, then the
particle evolves into a superposition of the new stable
modes that would persist if the potential were constant
in time thereafter.

The new modes may not be mutually complete with
the old ones. For example, when a cavity shrinks quickly,
the portion of the particle state now outside cannot be
represented by the new modes. In this case, there is
a chance that the particle is bumped to an unexpected
state, depending on how interference resolves the modes
outside, and would not likely revert to the prior state if
the cavity expands back again.

Neglect of spontaneous events in QDT and ETH be-
comes less accurate with more particles involved, both
within the system and through coupling with its environ-
ment. Spontaneous emission and subsequent absorption,
as well as sensitive collisions among particles, generate
effectively random shifts in the local potential felt within
the system. These are extrinsic, not intrinsic, quantum
jumps [25] with short but finite jump time governed by
interference [26, 27]. Each event disrupts the evolution of
neighboring particles. Extended multi-particle states and
mode superpositions are particularly susceptible to small
shifts producing destructive interference. Only modes
that maintain constructive interference despite such fluc-
tuation are stable during a process, i.e. a mode is stable
if a reduced particle reduces back to the same mode after
environmental fluctuation and weak collisions. Random
disruption tends to destroy correlation between particles
and reduce them to single stable mode states.

In terms of decoherence and reduction theories, each
particle acts both as a microsystem and as the environ-
ment for all of its neighbors, effectively causing every
particle to evolve in a non-unitary manner at all times.
However, assumptions in decoherence theory that may
be reasonable for well isolated microsystems fail with
strong coupling, namely the independence of microsys-
tem modes from the environment, initially uncorrelated
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microsystem and environment states, and separate set of
observables for microsystem and environment. In princi-
ple, every coupled neighbor exerts a disrupting influence
so that their modes are interdependent; the state of a
particle depends on that of its neighbors, which in turn
depends in part on the state and history of that particle.
The coupling range is typically tens to thousands or more
particles deep, in line with the CSL range suggested in
Ref. [15] to mimic the classical regime. The rate of dis-
ruption is then thousands to billions times greater than
the individual spontaneous and collision rates. Conse-
quently, including spontaneous emission renders the par-
ticle equation of motion both stochastic an non-linear,
as required for reduction. Rapid fluctuations in the lo-
cal potential function produced by random events among
neighbors may represent a multitude of stochastic local-
ization processes envisioned in CSL theory, with effective
reduction rate magnified by the number of processes.

From the perspective of ETH, mode evolution may be
the source of the assumed random ensemble. Stochas-
tic reduction of individual particles causes the state of
a system of particles to fluctuate. This activity may re-
semble quantum chaos by continually altering the system
Hamiltonian randomly over a relatively small range, cor-
responding to the static ensemble presumed in random
matrix theory. The “energy eigenstate” conjectured by
Berry mimics the ensemble characteristics of this fluc-
tuation in a closed system (with constant energy) once
it has settled to equilibrium. Open systems fluctuate
in energy as well, which may be described as a random
ensemble of energy eigenstates spread over energy. How-
ever, the crucial distinction here is that all particles are
uncorrelated. Representing their evolution as a stochas-
tic ensemble of unitary system eigenstates may be com-
plete mathematically but is unwarranted, because system
eigenstates don’t have time to resolve, and doing so ob-
scures the key consequence that every system exhibits
well-defined mean properties of its constituents.

A recent numerical study of eighteen coupled spins
found that one particle obeys a thermal distribution if
the state of each of the other particle interactions has
Gaussian uncertainty [30]. This behavior is consistent
with local mode evolution, yet is presented as justifica-
tion for the ETH. An explanation how such uncertainty
develops in their unitary model is still needed to support
the authors’ claim to have derived statistical mechanics
by quantum mechanics alone in non-integrable systems.

The QDT, CSL and ETH models support the view
that emission, absorption and collision events occurring
in the environment have a stochastic effect on a particle
that disrupts its unitary evolution. Inversely, this view
supports these models with an SMP mechanism. There is
a continuum of behavior from weakly coupled microsys-
tems described by QDT and ETH to thermalization of
strongly coupled subsystems in which every particle state
reduces much faster than mode changing events occur
and every particle exists in one currently stable mode
practically all of the time. Systems evolve predicably in

this thermodynamic limit, even though the trajectories of
individual particles fluctuate and mix, and so may seem
microscopically chaotic. Classical chaos refers to condi-
tions in which system macroscopic properties are highly
sensitive to the initial mean state.

To summarize: Quantum modes of motion resolve by
interference as particles traverse their available space,
which is governed by surrounding particles. Mode res-
olution takes many round trips. Each particle state is
highly sensitive to the configuration of its neighbors. Any
interaction causes phases shifts resulting in new interfer-
ence patterns conserving energy and momentum. Eigen-
modes of an entire complex system do not generally re-
solve before random particle motion irreversibly alters
the potential landscape. Electron valence modes sup-
ported by a stable lattice of ions are a notable excep-
tion. Any group of fundamental particles that remain
phase coherent for some time, like many-body scars in the
ETH model [31, 32], may be treated as composite par-
ticles for thermodynamic analysis. For example, nuclei,
atoms, molecules, Cooper pairs, and many other quasi-
particles are stable composite particles at progressively
lower energy density threshold. Any interaction that re-
peatedly disrupts phase continuity, such as practically
random mode and phase changing collisions as well as
emission and absorption, produce interference that favors
one mode by the CSL model. Only single particle modes
are robust enough to be stable in natural conditions that
quickly destroys any correlation and entanglement be-
tween particles.

This explanation suggests that reduction and localiza-
tion of single particle states is endemic, strengthening
with greater particle density and degrees of freedom. We
observe macroscopic objects to be in one classical posi-
tion because particle spacing is microscopic in condensed
matter and the particles themselves contain their neigh-
bors. The uncertainty in object position is the size of its
particle modes, well below unaided human perception.
Atoms and molecules are localized and stable relative
to their center of mass for the same reason, and so act
as composite particles. Fundamental quantum physics
emerges only when reduction and diffusion are suppressed
in all forms. The Shrödinger cat paradox is resolved
because superposition is a microscopic phenomenon; no
natural, much less living, system can maintain a super-
position of modes for any practical time span.

All complex physical systems equilibrate locally and
globally because their constituents lose correlation
through reduction and collisions. The rate that uncor-
related particles transition from one mode to another is
proportional to the population of the former. Therefore,
over-populated modes, relative to a balanced state, tend
to shed particles while under-populated modes gain. Far
from equilibrium, each particle mode varies with local
conditions and does not yet share characteristics that
might be identified as a material phase. Mode struc-
ture evolves as the particle configuration shifts, and vice
versa, in a dance that gradually stabilizes toward steady
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mean mode population favoring a single material phase
locally. This dance continues through externally driven
shifts in local conditions.

The measurement problem may be understood as fol-
lows. A particle detector is a macroscopic device involv-
ing an enormous number of coupled yet uncorrelated par-
ticles. When a particle enters a detector, its state initially
may resolve to a superposition of the detector entrance
modes, yet is reduced to one of these modes by interac-
tions with the material forming the detector. This re-
duction occurs very quickly, on the order of the detector
material correlation time, destroying any entanglement
such that only one mode survives to be recorded.

In this perspective, “detection” does not imply change
in knowledge. Rather, reduction is a rapid, local quan-
tum process that generates a readable macroscopic sig-
nal when occurring in an efficient detection device. Any
device able to maintain unitary evolution cannot be ther-
mal and would not be a detector in the traditional sense.
Reduction is not specific to detectors and occurs continu-
ously everywhere among collections of particles, whether
inside or out of an arbitrarily designated system.

This conclusion impacts microsystem manipulation
schemes, such as quantum computing [28], in which a
“measurement” process to initialize a definite state is
usually assumed to be quick controlled step. The op-
tions are limited. Coherent interaction simply mixes the
current state superposition of a qubit. Short and strong
incoherent interaction reduces the state randomly to one
of the eigenfunctions. Spontaneous emission to a definite
mode is apparently abrupt but not controllable in timing
or phase. Lastly, thermal contact with the environment
reduces each particle to its lowest available energy state,
which would be uncorrelated particle modes as fluctua-
tion disrupts formation of microsystem eigenstates.

The summary above also dispels any notion that there
is a distinct class of classical phenomena or dynamics.
The reduction mechanism originates with spontaneous
emission, which is inherently quantum mechanical and
integral to the SMP. Diffusion, dissipation, equilibration
and thermal dynamics consequently follow in either di-
rection of time [16].

Dynamic system models are tractable in either the
QDT limit of a nearly isolated microsystem, or in the
thermodynamic limit derived below. In the natural world
described by thermodynamics theory, distinction of sys-
tem from environment is an artificial convenience, cou-
pling is rampant, boundaries are in continuous turmoil,
and reduction is much faster than the time for ambi-
ent conditions to evolve and the interval between mode-
changing events, i.e. strong collisions and absorption and
emission of real particles. Complex systems practically
evolve from one configuration of particle modes to an-
other in quick jumps. As these mode changes represent
transfer of energy, momentum and position, it is neces-
sary to separate them from the reduction process in or-
der to evaluate how a system evolves. The intermediate
mesoscopic case, when the reduction rate is comparable

to mode transition rates, does not simplify to concise
equations of motion and may exhibit a combination of
quantum and quasi-classical behavior.

IV. MEASUREMENT

Practical measurement occurs over a finite time inter-
val τmeas. There are four time scales to consider when
conducting experiments: reduction time τred, system cor-
relation time τcorr, mode transition rates 1/τmode, and
measurement time. Outside of the experimental physics
regime, τred is by far the smallest. In that case, ignore
this fast reduction transition following mode changing
events. Each particle effectively exists in one stable mode
at any moment, not correlated with other particles, and
relatively sudden transitions between modes.
Two further practical conditions are (1) measurement

time must be short relative to significant change in state
to capture system evolution but also (2) allow enough
particles to transition among modes during a measure-
ment for this number to be represented accurately by
the average rate.
All system properties fluctuate with the system state.

Thermodynamics theory focuses on the stable compo-
nent, i.e. the mean values of measurements as the fluc-
tuation tends to cancel out. Even though mean val-
ues still fluctuate for finite measurement time, the mean
of repeated measurements has a well-defined asymptotic
limit. There is a practical trade-off in choosing τmeas

between lower uncertainty in the measurement and less
sensitivity to macroscopic change. We naturally asso-
ciate mean thermal properties with macroscopic, classi-
cal physics in the thermodynamic limit of large systems
where the fluctuation amplitude is negligible.
Therefore, in the trajectory of any variable expecta-

tion value, identify the mean value averaged over a mea-
surement period as the discernable macroscopic part and
the difference as the thermal microscopic part. This dis-
tinction applies even to small and simple systems where
fluctuation amplitude may be comparable or larger than
the mean, in which case “macroscopic” trends still exist
but may be difficult to discern.
A particle position expectation value r varies with

each random transition to another mode. The micro-
scopic part, rmicro(t) = r(t) − rmacro, is this fluctuat-
ing trajectory less the (macroscopic) mean position value
rmacro = ⟨r(t)⟩, where angle brackets indicate averag-
ing over the measurement period. Kinetic and potential
energy terms expand into macroscopic, microscopic and
mixed products. For example, the momentary kinetic
energy of a single particle expands as KE = 1

2m|v|2 =
1
2m(v2macro +2vmacro · vmicro + v2micro). The mixed terms
contribute so long as the mean and fluctuation remain
correlated. They average to zero for measurement times
longer than the system correlation time (τcorr < τmeas).
Work done on a particle depends on how remote the

source. Applied force fields generated by distant parti-
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cles fluctuate randomly relative to a local particle trajec-
tory, and therefore only the macroscopic term in dW =
Fapplied · dr survives averaging. Fluctuation in the lo-
cal configuration of neighboring particles, and the force
they exert, is likely correlated to the test particle motion
and some average microscopic work can shift its poten-
tial energy. Measured system energy is then comprised
of two distinct components in natural conditions when
correlation time tends to be very short:

⟨Esys⟩ ≈ ⟨Emacro⟩+ ⟨Emicro⟩ . (1)

The system correlation time diminishes with increas-
ing system complexity. Simple systems may not satisfy
τcorr < τmeas, in which case this split becomes less dis-
tinct. They may be more accurately analyzed mechani-
cally, employing Monte Carlo techniques to account for
spontaneous events.

In addition to kinetic and potential energy, a sta-
ble particle carries energy associated with its formation.
Fundamental particles carry rest mass energy and self
field energy generated by its charge. A composite parti-
cle carries the formation energy of its constituent funda-
mental particles and their binding energy when brought
together into its ground state configuration. Addition-
ally, particles of a system settle into distinct and stable
material phases in quasi-equilibrium. It is convenient for
thermal process analysis to include in formation energy
the mean binding energy, absent thermal motion, asso-
ciated with each phase. Formation energy is uniform
and constant for all particles of a given constitution and
material phase and can be computed theoretically. Con-
stitution and phase identifies unique particle species and
a particle’s thermal properties. (Binding energy varies
smoothly near the interface between phases. Particles
within this transition layer may be treated as the species
of either adjacent bulk phase, with the difference in bind-
ing energy assigned to surface tension.)

Total system energy is the sum of constituent parti-
cle energy, which can be expressed in two ways when
averaged for longer than the correlation time in quasi-
equilibrium. Note that the total number Nj of species
j in the system fluctuates as particles leave and enter
and transform among species. This fluctuation is uncor-
related with each particle trajectory for large (Nj ≫ 1),
slowly varying systems, and mean energy due to fluctu-
ating number averages to zero.

First method: Total kinetic energy KE =∑Species
j

∑Nj

k
1
2mj |vjk|2 with index k specifying a par-

ticle. The measured value ⟨KE⟩ splits into macroscopic∑Species
j ⟨Nj⟩ 12mjv

2
macro,j and microscopic components,

when the mean bulk flow velocity of species j is defined

as vmacro,j =
∑⟨Nj⟩

k ⟨vjk⟩/⟨Nj⟩. Similarly defining the
mean bulk position for each species splits the total po-
tential energy. Consequently, the total mean system en-
ergy splits into macroscopic and microscopic components.
Microscopic energy represents the system formation and

heat content Qsys:

⟨Emicro⟩ ≈ ⟨Eform⟩+ ⟨Qsys⟩ (2)

Second method: The particle trajectory is evaluated
as hopping among modes. Let τjki represent the dura-
tion that particle k of species j exists in mode i dur-
ing a measurement. The measured average energy of
particle k is then the sum of mode energies times the
fraction of the measurement period τmeas that it resided

in each mode: ⟨Ejk⟩ =
∑Modes

i ϵjiτjki/τmeas, where ϵji
is the mean energy expectation value of a particle of
species j in mode i, including formation energy ϵ0j . Now

recognize
∑⟨Nj⟩

k τjki/τmeas as the mean mode occupa-
tion number ⟨Nji⟩. Total mean system energy ⟨Esys⟩ =∑Species

j

∑Nj

k ⟨Ejk⟩ becomes

⟨Esys⟩ =
Species∑

j

Modes∑
i

ϵji⟨Nji⟩ . (3)

Each factor in this expression can be computed from first
principles. Macroscopic energy can also be computed in

the same manner by ⟨vjk⟩ =
∑Modes

i vjiτjki/τmeas and
similarly for mean position. Likewise, flows of parti-
cles, energy and momentum are sums of mode occupation
times quantum transition rate.

Given that ⟨Eji⟩ is the absolute energy, the system
heat content can then be determined by subtracting the
macroscopic and formation energy components:

⟨Qsys⟩ ≈ ⟨Esys⟩ − ⟨Emacro⟩ − ⟨Eform⟩ (4)

Tracking heat content is the primary challenge in ther-
modynamic analysis. Friction (and dissipation generally)
generated during a process can be computed directly
from first principles by comparing change in heat and
macroscopic energy, rather than accounted for indirectly
through change in entropy. The next task is to estimate
the mean mode energy and occupation in (3), which is
feasible generally only in equilibrium. A much larger set
of parameters, some likely referring to prior states, is
needed to describe a non-equilibrium state.

V. EQUILIBRIUM DISTRIBUTION

Practically, equilibrium is a state when the system no
longer evolves on average, while recognizing that the in-
stantaneous behavior continues to fluctuate about this
mean. Therefore, all mean flows are zero among modes,
between species and between regions and the mean occu-
pation of each mode is steady in time. This macroscop-
ically steady state represents the set of all mode config-
urations that conform to these constraints, even as the
system evolves among this set, and does not imply exis-
tence in a pure system quantum eigenstate.

In principle, the mean distribution in equilibrium may
be derived from any function that is highly sensitive to
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dynamically distinct particle configurations. Configura-
tions that differ by dynamically irrelevant particle fea-
tures do not alter flow and should be counted as degen-
erate. The number of possible dynamically distinct con-
figurations Ω is a suitable and familiar function and is
employed here. However, this measure is extensive and
a condition for equilibrium should not favor a smaller
system. Therefore, employ the intensive relative change
condition

〈
∂tΩ

/
Ω
〉
t
= ⟨∂t lnΩ⟩t = 0. The angle brackets

represent time average over a measurement. The sub-
script is omitted hereafter.

All particles of the same constitution, energy and mo-
mentum respond to force in the same manner and so
are dynamically equivalent. Therefore, group all particle
modes by energy and momentum. Particles in differ-
ent groups respond differently and processes exist that
can distinguish them practically. A configuration {Nji},
where Nji particles of a certain constitution, indexed by
j, occupy the group of modes degenerate in energy and
momentum indexed by i, is dynamically distinct from
any other distribution among these mode groups. Index
j also represents unique species because regions tend to
settle into uniform material phase.

This approach is similar to Boltzmann’s combinatorial
argument yet avoids objections identified in reviews such
as Refs. [5] and [29]: (1) It does not rely on Boltzmann’s
equal a priori probability postulate or an implicit sam-
pling of states to achieve equal probability. Both mode
energy and momentum are necessary and sufficient to
identify dynamically distinct particle states. Equal prob-
ability is deduced by relativistic invariance. (2) It does
not rely on the ergodic hypothesis and metric transitiv-
ity, which remain unproven generally. (3) It does not
rely on any symmetry or notion of sufficient reason. (4)
It is valid for any particle interaction, and not limited to
ideal gas. (5) It does not involve phase space cell size.
There is no modern consensus how to resolve this issue
in Boltzmann’s method. (6) It is inherently dynamic,
not a static maximal condition as stipulated by Boltz-
mann, and produces a quasi-equilibrium condition that
indicates when the distribution practically approximates
equilibrium. (7) It does not require detailed balance in
the Maxwell-Boltzmann sense that every path must bal-
ance. (8) It applies to finite systems of many particles,
as opposed to methods that resolve at the infinite size
limit. ] (9) It describes individual systems, and does not
rely on ensemble statistics.

Internal flows among modes of the same species bal-
ance in equilibrium. Mean net flows to the outside also
must be zero to achieve a steady state. Introduce total
system particle number Nj , energy E and momentum
P by the trick of Lagrange multipliers, adding to lnΩ
terms that are identically zero: ηj(Nj−

∑
jiNji), βE(E−∑

ji ϵjiNji), βpx(Px−
∑

ji pxjiNji), βpy(Py−
∑

ji pyjiNji)

and βpz(Pz −
∑

ji pzjiNji) with summation over mode
groups. Here ηj , βE and βp are system-dependent func-
tions that evolve along with mode energy spectrum while
the system is out of equilibrium. The equilibrium condi-

tion may then be expressed as

0 ≈
〈
∂t

[∑
j

ηj

(
Nj −

∑
i

Nji

)
+ βE

(
E −

∑
ji

ϵjiNji

)
+ βp ·

(
P−

∑
ji

pjiNji

)
+ lnΩ

]〉
. (5)

The total number of dynamically distinct configura-
tions is the product of distinct arrangements in each
group of degenerate modes. It’s logarithm is then a sum
of mode specific factors lnΩ =

∑
ji lnΩji. Neglecting

the very slow change in Lagrange coefficients and mode
spectrum (ϵ̇ji and ṗji) near equilibrium, (5) becomes

0 ≈
∑
j

ηj⟨Ṅj⟩+ βE⟨Ė⟩+ βp · ⟨Ṗ⟩

+
∑
ji

⟨∂t lnΩji⟩ − (ηj + βEϵji + βp · pji) ⟨Ṅji⟩ . (6)

Rate of change is indicated by Newton’s dot accent ẋ =
∂tx.
Individual mode population can only be stable if ex-

ternal particle and energy flows, and total force on the
system, have no disrupting effect. A quasi-equilibrium
condition may be stated as when the change in total par-
ticle number and energy and all applied forces are small
enough, relative to the typical fluctuation amplitudes in
the modal terms, to produce a sufficiently stable popula-
tion distribution for accurate analysis:∣∣∣∣∑

j

ηj⟨Ṅj⟩+ βE⟨Ė⟩+ βp · ⟨Ṗ⟩
∣∣∣∣ ≪∣∣∣∣∑

ji

⟨∂t lnΩji⟩ − (ηj + βEϵji + βp · pji) ⟨Ṅji⟩
∣∣∣∣ . (7)

These arguments apply to relativistic particles as well.
Note that observers in any inertial reference frame ob-
serve the same set of modes, even if the mode profiles
appear to be different. The number of particles existing
in a mode is the same in every frame. The summand
in (6) must then be invariant under Lorentz transfor-
mations. The number of configurations is invariant and
so the other terms must be invariant as well. Parame-
ter η is invariant because it represents the difference in
configuration number, as discussed below. If p is spec-
ified to represent canonical momentum, not mechanical
momentum, then p̄ = {ϵ,p} forms a relativistic 4-vector.
Therefore, the four β parameters must transform as a rel-
ativistic 4-covector β̄ such that β̄ν p̄

ν
ji = βEϵji + βp · pji

is an invariant 4-scalar. They also must be functions of
the velocity u with which the observer moves relative
to the frame in which the mode momentum p̄i is evalu-
ated. This condition is satisfied in flat spacetime when
β̄ = β0γu{1,−u/c} is proportional to the 4-velocity of
the observer, given Lorentz factor γu. For an observer
analyzing a process in their own reference frame, u = 0
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and β̄ = β0{1, 0}. Only βE = β0 is not zero. Two ob-
servers can compare their analyses directly if they move
at nonrelativistic speeds (|u| ≪ c). However, four β pa-
rameters are generally necessary to infer the distribution
apparent to someone moving at relativistic speed.

First consider a system of one type of particle with a
specific constitution. These results are later extended to
describe mixed systems generally.

Fundamental particles are indistinguishable and obey
specific constraints imposed by quantum phase symme-
try. Due to quantum interference, the Pauli exclusion
principle requires that fermions never occupy the same
mode as another fermion of the same species. There-
fore, for each group of degenerate modes, Ni ≤ gi and
gi!/Ni! (gi −Ni)! is the number of unique ways to arrange
Ni occupied modes plus gi −Ni empty modes regardless
of their order. The total number of fermion configura-
tions is then

Ωfermion =

mode
groups∏
i=1

gi!

Ni! (gi −Ni)!
. (8)

On the other hand, bosons of the same species may exist
together in the same mode. In this case,

Ωboson =

mode
groups∏
i=1

(Ni + gi − 1)!

Ni! (gi − 1)!
, (9)

which counts the number of unique ways to arrange Ni

particle interspersed with gi − 1 dummy elements acting
as mode dividers, regardless of order.

Both expressions converge to the same formula when
gi ≫ Ni. Effectively all particles become dynamically
distinguishable when they rarely occupy the same mode
because there is no ambiguity as to which particle re-
sponds to interaction with a given mode. In other words,
a lone particle is effectively distinguishable by the mode
it occupies. This condition defines the classical regime.
Quantum mechanical behavior becomes significant when
two indistinguishable particles are likely to occupy the
same mode.

In our terrestrial experience, in the observer’s rest
frame, (a) only one β parameter is pertinent, (b) total
applied force on a system is not required to be zero in
equilibrium because βp = 0, and (c) all modes degener-
ate in energy are then dynamically equivalent and equally
populated. All of the modes with the same energy com-
bine in (8) and (9) to produce the same formulas, but
with index i representing mode energy level with energy
degeneracy gi regardless of momentum.
Note that both (8) and (9) reduce to Ωfermion =

Ωboson = 1 when there is no degeneracy (gi = 1), in
which case they are utterly insensitive to configuration
and useless for our purpose. A relativistic perspective of
a system of fundamental particles may have low or even
no degeneracy. Fortuitously, we can derive the rest frame
distribution to high accuracy and then infer a relativistic
perspective by the reasoning above.

In the following derivation of the equilibrium distribu-
tion it is assumed that Ni ≫ 1 for every occupied mode
energy group in order to employ Stirling’s approxima-

tion for lnN ! =
∑N

n=1 lnn ≈
∫ N

1
dn lnn ≈ N lnN − N .

This assumption can be valid when gi is large even if the
mean occupation per mode is small because Ni is the
group occupation. Group degeneracy gi grows quickly
with mode energy in systems that allow motion in two
and three dimensions. This growth more than compen-
sates for the tendency for particles to occupy lower energy
modes such that Stirling’s formula is sufficiently accurate,
except possibly for the lowest level fermion modes which
can accommodate few particles.

Consider the fermion case first. The boson case follows
the same reasoning. By Stirling’s formula,

lnΩfermion =
∑
i

ln gi − lnNi − ln ((gi −Ni)!

≈
∑
i

gi (ln gi − 1)−Ni (lnNi − 1)

− (gi −Ni) (ln (gi −Ni)− 1) ,

(10)

with sum over the spectrum of distinct mode energies.
Nonrelativisitic quasi-equilibrium condition (7), be-

comes

0 ≈
∑
i

(
ηFD + βϵi

)
⟨Ṅi⟩+⟨Ṅi lnNi⟩−⟨Ṅi ln (gi −Ni)⟩ ,

(11)

dropping the subscript from β = βE = β0. Again,
change in gi is neglected because the mode spectrum
varies slowly near equilibrium.

The rate of change in mode population is the aggre-
gate of all inter-modal transitions. The two terms in the
summand that are an average of the product of particle
numbers can be reduced by separating the mean from
the rapid fluctuation, Ni = ⟨Ni⟩ + δi, so that when the
fluctuation is relatively small,

〈
Ṅi lnNi

〉
=

〈
Ṅi ln

[
⟨Ni⟩

(
1 +

δi
⟨Ni⟩

)]〉

≈
〈
Ṅi

〉
ln ⟨Ni⟩+

⟨Ṅiδi⟩
⟨Ni⟩

.

(12)

The latter term on the right hand side is much smaller
than the former and quickly averages to zero because
both the derivative and the fluctuation amplitude are
equally positive and negative over time and are uncorre-
lated over the measurement period. Neglecting the latter
term yields

0 ≈
∑
i

(
βϵi+η

FD+ln ⟨Ni⟩− ln
(
gi − ⟨Ni⟩

))
⟨Ṅi⟩ . (13)

Despite the overall stability of total energy and particle
number in equilibrium, the individual particles continu-
ally change modes in an uncorrelated manner through
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transitions and collisions, implying that ⟨Ṅi⟩ remain the
largest terms in (7). Therefore, the equilibrium condition
is satisfied only if the factor in parentheses is nearly zero
for each group of degenerate modes:

βϵi + ηFD + ln ⟨Ni⟩ − ln (gi − ⟨Ni⟩) ≈ 0 for all i (14)

or 〈
NFD

i

〉
≈ gi
eβϵi+ηFD + 1

. (15)

Note that this result only depends on characteristics of
a single mode because the rate ⟨Ṅi⟩ factors completely
in (13). The equilibrium distribution is robust in any
system with enough particles, independent of the rate of
particle interaction. Consequently, expressions relating
to non-equilibrium flow cannot derive solely from equi-
librium properties.

The equilibrium condition for a system of bosons simi-
larly follows from (9), given that Stirling’s approximation
requires Ni + gi − 1 ≫ 1 so that Ni + gi − 1 ≈ Ni + gi,
yielding the Bose-Einstein formula:

ln (⟨Ni⟩+ gi)− ln ⟨Ni⟩ − βϵi − ηBE ≈ 0 for all i (16)

or 〈
NBE

i

〉
≈ gi
eβϵi+ηBE − 1

. (17)

In both cases, particles are dynamically indistinguish-
able among the degenerate modes and therefore evenly
distributed among them. Therefore, the mean popula-
tion per mode is simply ⟨Ni⟩ /gi. Both Eqs. (18) con-
verge to the classical Maxwell-Boltzmann distribution at
sufficiently high temperature, ⟨Ni⟩ /gi ∝ e−βϵi , when the
mean number of particles occupying each mode is much
less than one.

The above derivation of the equilibrium distribution
assumes a system of one species. Yet the only constraint
on the set of accessible modes is that they are stable
in equilibrium, which is expected when the mean par-
ticle configuration and external conditions are steady.
These modes may include any interaction between parti-
cles within the system and those outside. An exponen-
tial distribution must result when the particle number
and their energy are stable. This result holds even when
the set of particles under consideration are embedded
within a system containing other particle species, so long
as the net particle transformation rate and net energy
flow between this subset and the rest of the system is
sufficiently low according to (7). (It is important to note
that while particles may transform from one species into
other species, they do not exchange subparticles. Any
subparticles that may exist individually during a process
are considered a distinct species.) In other words, any
subset of similar particles may be considered a system in
its own right. Particularly, this reasoning holds for ev-
ery species in a composite system. These subsets share
the same temperature because the number of configura-
tions for a composite system is simply the product of

permutations for each species with a common total en-
ergy constraint. Following the pure system derivation
closely, the mean quasi-equilibrium population per mode
of each species with energy ϵji is〈

NFD
ji

〉 /
gji ≈

(
eβϵji+ηFD

j + 1
)−1

, (18a)〈
NBE

ji

〉 /
gji ≈

(
eβϵji+ηBE

j − 1
)−1

, (18b)

where the subscript index j identifies the species of par-
ticle while i again refers to the mode.
Because any moving perspective counts the same num-

ber of particles in each mode, such an observer would
tally the same average number over the same measure-
ment interval, which is dilated relative to the rest frame.
These formulas, therefore, may be extended to the rela-
tivistic regime by substituting βϵji → β̄ν p̄

ν
ji.

Equations (18) pertain all possible processes once an
arbitrarily defined system has settled to quasi-stability
by internal modal transition and by exchange of particles,
energy and momentum with its environment.

VI. SYSTEM STATISTICS

The remaining task is to determine the system con-
straint coefficients β and {ηj} in equilibrium in the rest
frame. The former sets an inverse energy scale, corre-
sponding to mean particle energy per degree of freedom
and expressed as temperature T = 1/kBβ through the
Boltzmann constant kB. Temperature can be inferred
from measured system properties or through contact with
a calibrated thermometer. The ηj coefficients have no di-
rect correspondence to our experience. Each ηj parame-
ter assures positive particle occupation in each mode with
total number Nj . Some practical method is required to
infer these coefficients from measurable system parame-
ters.
A key feature of the distribution is the quantum-

classical threshold near mode occupancy of one. Fermion
occupation is suppressed by interference above roughly
⟨Nj1⟩ /gj1 = 1/2, which defines a threshold temperature
by βϵj1 = −ηFDj . Bosons, in contrast, tend to condense
in the lowest energy modes at low temperature. Em-
ploying the same criterion, βϵj1 = ln 2− ηBE

j defines the
boson threshold temperature. It is tempting to express
η/β as an energy property (i.e. chemical potential) but
doing so obscures the origin of η and is inconsistent in
this theory of absolute energy measure because η varies
from positive in the classical regime to negative in the
quantum regime.
Equations (18) provide the means for expressing mean

system thermodynamic properties as a statistical average
weighted by a relative probability distribution over occu-
pied states. Each mode group has well-defined physical
properties. Therefore, each configuration of particles has
definite properties expressed through sensitivity of the
mode energy (and momentum in the relativistic regime)
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to change in measurable parameters characterizing the
system.

This procedure can be shown easily in the classical
regime and can be modified to produce quantum behavior
as well. Interpret ⟨Nji⟩ /gji ⟨Nj⟩ as the statistical weight
of finding a particle of species j in the ith mode accessible
to it, on average during a measurement in equilibrium.
The weight for each dynamically distinct state of par-
ticles in equilibrium is then the product of the particle
weights, e−βEs , where the energy of the specific configu-
ration {Nji}, represented compactly by state index s, is

Es =
∑species

j

∑modes
i ϵjiNji.

The set of these weight values forms a distribution
function over particle configurations occupied during a
measurement. This distribution normalized to one repre-
sents a probability for the system to be in a dynamically
distinct state:

Ps =
1

Z
e−βEs . (19)

with normalizing system partition function defined as

Z(T, {⟨Nj⟩}, · · · ) ≡
states∑

s

e−βEs . (20)

Here T and {Nj} are recognized explicitly as indepen-
dent equilibrium system parameters. Other parameters
such as volume and applied field amplitude may also be
necessary to characterize a system sufficiently for ther-
modynamic analysis.

Define

ηj(T, {⟨Nk⟩}, V ) ≡ lnZ(T, {⟨N1⟩ , . . . , ⟨Nj⟩ , . . .}, V )

− lnZ(T, {⟨N1⟩ , . . . , ⟨Nj⟩ − 1, . . .}, V ) , (21)

which is generally dependent on the total particle num-
ber {Nk} because the presence of interacting particles
affects the mode spectrum and therefore the normaliza-
tion. The volume is held constant in this difference to
prevent external work being done. This difference mim-
ics a function derivative for large Nj :

ηj ≈
∂ lnZ

∂ ⟨Nj⟩

∣∣∣∣
T,V

. (22)

The partition function may be considered the result of
adding particles sequentially to an empty volume,

Z(T, {⟨Nj⟩}, V ) = exp

[ {⟨Nj⟩}∑
{nj}={0}

ηj(T, {nj}, V )

]
, (23)

The function eηj then may be interpreted as the relative
change in partition function due to the removal of one
particle of the jth species, and so is called the particle
partition. The property ηj then acquires the awkward
name of particle partition logarithm (PPL). Note that ηj
is generally dependent on all of the independent param-
eters and so cannot itself be varied independently. For

example, ∂ηj
lnZ is neither a feasible operation nor is

relevant analytically.
Consider a system of one species of fermions. Pauli

exclusion requires that only terms with single occupancy
appear in the partition function. Therefore, define the
fermion partition function for N constituents as

Zfermion(T,N, V ) ≡
modes∑
i1≥1

∑
i2>i1

· · ·
∑

iN>iN−1

e−βEs , (24)

where ik indicates the mode of the kth particle. The
sum index inequalities ensure that at most one fermion
occupies a mode.
When the mode energies are independent of the con-

figuration, which describes ideally interacting particles,

then Es =
∑N

k=1 ϵik and the partition function may be
rearranged to isolate mode 1 terms as

Z
ideal

fermion =

(
e−βϵ1

∑
i2>1

· · ·
∑

iN>iN−1

e−β
∑

k>1 ϵik

+
∑
i1>1

∑
i2>i1

· · ·
∑

iN>iN−1

e−β
∑

k>1 ϵik

)
. (25)

If N1s is the population of mode 1 in state s, the mean
is ⟨N1⟩ =

∑
sN1sPs, which may be expanded as〈

N
ideal

fermion
1

〉
=
e−βϵ1

∑
i2>1 · · ·

∑
iN>iN−1

e−β
∑

k>1 ϵik

Z ideal fermion

=
1

1 +

∑
i1>1

∑
i2>i1

···
∑

iN>iN−1
e
−β

∑
k>1

ϵik

e−βϵ1
∑

i2>1 ···
∑

iN>iN−1
e
−β

∑
k>1

ϵik

.

(26)

Both nested sums in (25) may be recognized as “reduced”
partition functions, labeled Z ′, excluding mode 1 from
the tally. The latter sum involves N particles,

Z ′ ideal
fermion(T,N, V ) ≡

∑
i1>1

∑
i2>i1

· · ·
∑

iN>iN−1

e−β
∑

k>1 ϵik ,

(27)
while the former involves one less. Analogous to (21),

define the reduced particle partition as eη
′(T,N,V ) ≡

Z ′(T,N, V )/Z ′(T, V,N − 1) , so that〈
N ideal fermion

1

〉
= 1

/(
1 + eβϵ1+η′

)
. (28)

This result applies to all modes because any mode may be
labeled 1 in this derivation. It resembles the Fermi-Dirac
distribution (15) but with reduced PPL ensuring correct
normalization. Pauli exclusion requires that many en-
ergy levels are occupied even at low temperature so that
this difference between the reduced and full PPL value is
insignificant under all conditions in the thermodynamic
limit. Therefore, η′ may be replaced by η to very high
accuracy in (28) and further equated with ηFD in (15):

ηFD ≈ η . (29)
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For a system of N boson particles of one species, define
the partition function as

Zboson(T,N, V ) ≡
modes∑
i1≥1

∑
i2≥i1

· · ·
∑

iN≥iN−1

e−βEs , (30)

where again ik indicates the mode of the kth particle.
The sum index inequalities allow multiple occupation and
ensure that distinct configurations are counted only once.

If the mode energies are independent of the configu-
ration, as for ideally interacting particles, the partition
function may be organized to isolate the population of
mode 1,

Z
ideal
boson =

N∑
N1=0

e−N1βϵ1

×
modes∑

iN1+1>1

∑
iN1+2≥iN1+1

· · ·
∑

iN≥iN−1

e−β
∑

k ϵik

=

N∑
N1=0

e−N1βϵ1Z ′ idealboson(T, V,N −N1) ,

(31)

where Z ′ represents the reduced partition function omit-
ting mode 1 analogous to (27).

The ideal boson PPL is independent of system particle
number outside of a narrow range just above threshold.

Therefore, in most cases, Z ′ideal boson(T, V,N − N1) =

e(N−N1)η
′(T,N,V ) and the mean population of mode 1 re-

duces to〈
N ideal boson

1

〉
=

∑N
N1=0N1e

−N1(βϵ1+η′)∑N
N1=0 e

−N1(βϵ1+η′)
. (32)

Substituting y = e−βϵ1−η′
and identities

∑N
n=0 y

n = (1−
yN+1)/(1− y) and

∑N
n=0 n y

n = y ∂y
∑N

n=0 y
n produces〈

N ideal boson
1

〉
=

1

1/y − 1
− N + 1

1
/
yN+1 − 1

. (33)

This function transitions quickly between asymptotes at〈
N ideal boson

1

〉
= 0 and N around y = 1. The latter term

is negligible for y < 1 − 6/N or
〈
N ideal boson

1

〉
< N/6,

which is true for all modes above the ground level.
The mean excited boson population resembles (17)

with reduced PPL. Again, the PPL may replace the
reduced PPL to very high accuracy for excited modes.
Evaluation of formula (33) for the ground mode is more
subtle but the ground population must also match the
Bose-Einstein value simply by subtracting the sum of all
excited particles from N . Alternatively, an approximate
form for all mode levels derived from Darwin-Fowler anal-
ysis of ideal bosons [37],

ηBE ≈ η + 1/N , (34)

may be easier to work with. The 1/N term is significant
only for the ground level near full saturation.

VII. NATURAL THERMODYNAMICS

In natural conditions, mean mode population and
mode transition rates determine all measured behavior,
properties and flows. There are no concise formulas
far from equilibrium. Near equilibrium thermodynamic
analysis treats subsystems as rapidly thermalized while
mode transitions between subsystems produce flows. All
subsystem quasi-equilibrium thermodynamic properties
may be computed as derivatives of the subsystem parti-
tion function with respect to the subsystem parameters.
Partition functions are computed by (24) and (30). If not
feasible theoretically, a partition function may be inferred
from property measurements over a range of parameter
values. The subsystem PPL and mean population distri-
bution is then derived from this result by (21) and (18).
It is important to recognize that while the partition

function provides a concise way to relate equilibrium
properties and to estimate fluctuation variance, it is not
essential to thermodynamics and its association with en-
semble probability has caused confusion. State proba-
bility in this context means the relative number of dy-
namically similar configurations out of a set all possible
equilibrium configurations. This is a static ratio, not the
dynamic quantum probability per unit time to jump to
another state that governs fluctuation statistics and flow.
These two may be related, at least for ideal gas, through
residence time only in the limit of infinite averaging pe-
riod with the assumption of constant modes and ergod-
icity [5, 13, 35]. Out of equilibrium, modes shift and the
likelihood that a configuration occurs depends on prior
history. Residence time is then not normalizable as a
probability function within a practical time interval that
captures macroscopic motion. In other words, the notion
of state probability is not a reliable tool for thermal dy-
namics. Yet Sec. IV implies that it is not necessary to
assume that each particle traverses every mode or that
all possible configurations occur over any time span. It is
sufficient to recognize quantum mode transition rates as
the only physical stochastic probability. Also note that
the quasi-equilibrium condition (7) yields the same mean
distribution whether the system is open or closed, adia-
batically or fully isolated. These points together obvi-
ate any need to invoke microcanonical, canonical, grand-
canonical, etc., stationary ensembles.
The current set of possible configurations does not rep-

resent an ensemble of individual systems. Rapid decorre-
lation among all particles breaks the notion that systems
exist in a sequence of eigenstates and that the mean of
a randomly prepared ensemble produce thermodynamic
relations. If that were the case, a real system would wan-
der over the entire range of configurations. Instead, the
mean behavior of a given system remains relatively sta-
ble as all particles meander in opposing directions across
many modes simultaneously. Ensembles and ergodicity
are irrelevant concepts under natural conditions.
Internal and external fluctuation comes from the

stochastic nature of quantum transitions, not summa-
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tion over a random ensemble of unitary states (which
still begs an explanation how the ensemble becomes ran-
dom). It is reasonable that the breadth of a property
distribution over equilibrium configurations is related to
the fluctuation amplitude of that property. However, ac-
curate computation of fluctuation and diffusion requires
mode transition rates that are absent in the equilibrium
distribution.

Detailed balance of mode transitions is expressed gen-
erally in three independent ways [16]. These dynamic
conditions supplant the static extremal conditions ex-
pressed in the Second Law. First, balance among tran-
sitions of particles of the same species within a subsys-
tem, which is accounted for in (18). Second, balance of
particle transformations between subsystems of different
species, accounted for in equilibrium kinetic conditions.
Third, balance between coupled, spatially adjacent sys-
tems implies that systems must be spatially uniform in
equilibrium. Imbalance produces net spatial flow of par-
ticles, energy and momentum. Net flow equations match
empirical “natural laws” when imbalance is slight.

The first balance condition was accessible to early pi-
oneers in the field because the aggregate of mode transi-
tions, represented solely in Ṅji, factors out of the equi-
librium population equations (14) and (16). Equilibrium
is consequently very robust and characterized by steady-
state parameters. But it also follows that equilibrium
properties are not dynamic variables and cannot inform
on the rate that a system can change. This issue is the
reason why standard theory must postulate kinetic con-
ditions, i.e. equal chemical potential, and relies on em-
pirical transport equations for process analysis.

VIII. INTERMEDIATE REGIME

This section demonstrates how dissipation may appear
in well isolated microsystems. Trapped atoms are a com-
mon model for qubits in quantum computers. A practical
qubit must remain coherent far longer than the period
needed to manipulate its state. Electromagnetic traps
are continually improving how an atom can be main-
tained with long decoherence time. A common test in-
duces Rabi oscillation between two stable modes of the
atom with a coherent electromagnetic field [33, 34]. Prob-
ing one mode after various delay indicates an oscillating
population. Dissipation causes the oscillation amplitude
to degrade irreversibly over time, depending on the de-
gree of isolation.

Weak thermal coupling with the qubit environment has
two primary effects in this case. First, the atom settles to
equilibrium when undisturbed. The initial state for a test
is then the lower energy mode if the equilibrium temper-
ature kBT is much less than the mode energy difference.
Second, as discussed in Section III, quick mode changing
events in the environment trigger reduction events in the
atom stochastically, proceeding over several orbits of the
atom modes. The latter mimic spontaneous emission,

but with the average rate of reduction controlled by the
degree of coupling.
The Rabi frequency ΩR and mean reduction rate γ are

usually low compared to the mode frequency, in which
case the transient reduction process can be approximated
as instantaneous. The atom state may then be evaluated
as follows.
An unperturbed two-level atom state evolves as

|ψ(t)⟩ = a(t)|1⟩ + b(t)e−iω0t|2⟩, where ℏω0 is the energy
difference between mode 1 and mode 2 and |a|2+|b|2 = 1.
A coherent field E = A cos(ωt) excites dipole moment
p12 = ⟨1|p̂|2⟩ so that the Schrödinger equation implies

∂ta = −ibΩ∗
R

(
ei(ω−ω0)t + e−i(ω+ω0)t

)
(35)

∂tb = −iaΩR

(
ei(ω+ω0)t + e−i(ω−ω0)t

)
(36)

with Rabi frequency ΩR = p12 · A/2ℏ. An asterisk in-
dicates complex conjugate. Neglect the fast oscillat-
ing terms which quickly average to zero with little ef-
fect. Only terms oscillating at the detuning frequency
∆ = ω − ω0 remain. These linear coupled equations
have solution a(t) = f(t) and b(t) = g(t) when {a(0) =
1, b(0) = 0}, or a(t) = −g∗(t) and b(t) = f∗(t) when
{a(0) = 0, b(0) = 1}, defining

f(t) =

(
cos(θt)− i

∆

2θ
sin(θt)

)
ei∆t/2, (37)

g(t) = −iΩ
θ
sin(θt)e−i∆t/2, (38)

with

θ =
√
|Ω|2 +∆2/4. (39)

A strong pulse can send the atom quickly into a desired
state.
For an initial state |ψ(0)⟩ = |2⟩, the atom state would

evolve to |ψ(τ)⟩ = −g∗(τ)|1⟩ + f∗(τ)|2⟩ after a time in-
terval τ without reduction. For convenience, define the
states |χ(t)⟩ = f(t)|1⟩ + g(t)|2⟩, |ϕ(t)⟩ = −g∗(t)|1⟩ +
f∗(t)|2⟩ and F (t) = |f(t)|2 and G(t) = |g(t)|2. For short
intervals, γτ ≪ 1 represents the mean probability of a
reduction event during the interval. Now approximate
the net effect as sequential unitary evolution and sud-
den reduction. This approximation affects the rate but
not the character of exponential dissipation of the mode
population.
There are three possible outcomes with different sta-

tistical weights for the atom state after the first interval
when averaged over many repeated tests:

|ψ(τ)⟩ =
{
(1−γτ)ϕ(τ), (γτ)G(τ)|1⟩, (γτ)F (τ)|2⟩

}
(40)

Before a second reduction event, the atom evolves as

|ψ(t > τ)⟩ =
{
(1− γτ)|ϕ(t)⟩,

(γτ)G(τ)|χ(t− τ)⟩, (γτ)F (τ)|ϕ(t− τ)⟩
}

(41)
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There are nine possible outcomes after the second inter-
val. Arranging these in order of statistical weight,

|ψ(2τ)⟩ =
{
(1− γτ)2ϕ(2τ),

(1−γτ)(γτ)
{
G(2τ)|1⟩, F (2τ)|2⟩, G(τ)|χ(τ)⟩, F (τ)|ϕ(τ)⟩

}
,

(γτ)2
{
G2(τ)|1⟩, G(τ)F (τ)|2⟩, F (τ)G(τ)|2⟩, F 2(τ)|1⟩

}}
(42)

The number of outcomes triples with each interval yet
follow a pattern. After n intervals, the averaged state is

|ψ(nτ)⟩ =
{
(1− γτ)nϕ(nτ),

(1− γτ)n−1(γτ)
{
G(mτ)|χ((n−m)τ)⟩,

F (mτ)|ϕ((n−m)τ)⟩
}n

m=1
,

(1− γτ)n−2(γτ)2
{{
G(mτ)G((k −m)τ)|ϕ((n− k)τ)⟩,

G(mτ)F ((k −m)τ)|χ((n− k)τ)⟩,
F (mτ)G((k −m)τ)|χ((n− k)τ)⟩,

F (mτ)F ((k −m)τ)|ϕ((n− k)τ)⟩
}n

k=m+1

}n−1

m=1
, · · ·

}
(43)

After many short intervals (n ≫ 1 and γτ ≪ 1) the
leading coefficient approximates an exponential function,
(1 − γτ)n ≈ e−γnτ . Each correction term is of order
γτ/(1 − γτ) smaller than the previous one. With per-
fect thermal isolation of the atom from its environment
(γ = 0), the leading term would yield an ideal con-
stant amplitude Rabi oscillation of the mode population.
When not isolated, reduction is extremely frequent in
natural conditions, in which case the atom is critically
damped, continually collapsing to the current state by
the quantum Zeno effect [36] most of the time. Similar
evaluation and conclusion applies generally to all parti-
cles in any environment.

Microsystem experiments often test the intermediate
regime to determine the coherence time. Figure 1 dis-
plays the mean mode 2 population and dipole moment
for an atom prepared in mode 2 at time t = 0 with zero
detuning (∆ = 0) and a degree of coupling that produces
a reduction rate of γ = 0.25ΩR. These data are the av-
erage of multiple simulated trajectories. Each trajectory
was computed by random selection of one of the possible
outcomes after each time interval. The asymptotic value
is 0.5, equal occupation of both modes, for any finite
reduction rate. Note that each test maintains full oscil-
lation amplitude that becomes less synchronized, from
test to test, with each reduction event. The average sig-
nal of many runs decays exponentially and, confusingly,
appears to remain in phase with the ideal oscillation as
if each atom decays by some novel mechanism.

In contrast, spontaneous emission from mode 2 to
mode 1 may be modeled by two outcomes after each
time interval, replacing (40) with |ψ(τ)⟩ = {(1 −
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FIG. 1. Average mode 2 population and dipole magnitude of
a 2-level atom driven by a resonant sinusoidal field coupling
the two stable modes. The number of runs averaged increases
with line thickness: 1, 4, 16, 64, 256. Fast reduction events
occur at a mean rate of 0.25ΩR. Spontaneous emission and
all other forms of dephasing are omitted. Note how the av-
erage of many runs appears synchronous with the ideal Rabi
oscillation even though each run is not.

γτ)χ(τ), (γτ)|1⟩}. This produces a similar average result
for low emission rate, but the asymptote drops toward
zero, i.e. mode 1 occupation, when the emission rate is
much greater than the Rabi frequency.

Other non-ideal dynamics may contribute to mean os-
cillation decay as well. Such attenuation observed in
Refs. [33, 34], for examples, is attributed to dephasing be-
tween individual responses due to varying trap conditions
as well as finite temperature. Atom position within the
focused laser beam and atom velocity distribution cause
Rabi frequency and detuning variation such that oscil-
lation becomes unsynchronized from one test (or qubit)
to the next. These effects are reversible in principle so
long as the trap is steady. On the other hand, fluctua-
tion in the trapping beams and thermal coupling to the
environment cause irreversible dephasing and occasional
reduction. Spontaneous emission, reduction and dephas-
ing all produce results of similar character and may be
difficult to distinguish. Highly stable trapping beams,
wide drive beam relative to the trap, low temperature
and weak coupling (i.e. low collision rate indicated by
low rate of temperature rise) are all necessary to achieve
long coherence time.
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IX. CONCLUSION

The five anomalous phenomena stated in the introduc-
tion are resolved in this dynamic mode picture recogniz-
ing spontaneous events as ubiquitous and essential to nat-
ural evolution. Such events disrupt quantum interference
and local mode formation, triggering collapse to stable
modes. Interference then may be said to enforce conser-
vation laws, to localize particles in condensed matter, to
create the impression of point particles and wave-particle
duality, to collapse mode superposition in natural condi-
tions, and to avoid Schrödinger’s cat paradox. In short,
quantum interference creates our reality.

Reduction occurs naturally whenever particles are
dense enough to respond quickly to effectively stochastic
feedback from their neighbors. We observe only reduced
states because measurement involves complex, condensed
matter devices in order to produce a macroscopic signal.

All particles reduce rapidly in systems under natural
conditions. They are uncorrelated as a result and diffuse
among accessible modes because net transition rate be-
tween modes is proportional to quantum mechanical rate
and the mode occupation. Diffusion from a highly popu-
lated group of modes with common macroscopic proper-
ties represents friction and all forms of dissipation, trans-
ferring bulk motion into heat, while diffusion into such
a narrow group is statistically insignificant. Diffusion
causes any initial state to evolve toward a steady state,
eventually settling, if the environment is undisturbed,
into quasi-equilibrium in which each particle species is
distributed closely to the limiting case (18). Every sys-
tem equilibrates at all times through diffusion even when
outside activity might drive it away from a steady state.

Thermodynamics is a manifestation of the SMP and
inherently quantum mechanical, not an independent the-
ory, as suggested by the names “classical thermodynam-
ics” versus “quantum thermodynamics.” Classical Ther-
modynamics and Statistical Mechanics theories were ini-
tial attempts to deduce general relations between macro-
scopic properties with crucial yet still unfounded assump-
tions made prior to knowledge of microscopic quantum
physics. Any theory that relies on results of these original
theories to justify their assumptions becomes circular.

Classical properties emerge when the reduction rate

greatly exceeds events among individual pairs of particles
and the chance of occupying the same mode is small. Any
system containing a large enough number of particles in
close proximity will appear to exist in one place and not
spread spontaneously over time because each particle is
localized by its neighbors. Particles at the surface of con-
densed matter become delocalized when they sublimate
into vapor. In broader terms, classical physics is just a
limiting case of quantum mechanics in natural conditions
when diffusion of the objects of interest is negligible.
Local conditions determine a particle state and evo-

lution. This region is microscopic in condensed matter
except for highly ordered crystalline material phases and
near critical points. Distant particles may influence lo-
cal systems through electromagnetic and gravity fields
but do not play a role in local diffusion. This conclusion
avoids conundrums in quantum mechanics such as how
the state of the universe can be communicated to every
particle in real time to maintain the Second Law.
Local fluctuation is crucial for understanding natural

behavior. These fluctuations do microscopic work that
undermines Lagrangian analysis. Only particles in stable
modes behave according to Lagrangian equations of mo-
tion for longer than the reduction time. The full panoply
of spooky quantum phenomena appear only in carefully
controlled environments where reduction is infrequent.
Reduction occurs with sufficient jostling by neighbors,

consistent with QDT and ETH theories developed to un-
derstand decay in well isolated microsystems by assuming
mechanisms with similar stochastic features. The tran-
sition from ideal quantum mechanics to thermal dynam-
ics may be understood as the mean effect of reduction
events. Both reversible processes and irreversible dissi-
pation may be evident in the intermediate regime when
the rates of these mechanisms are comparable.
Many theories proposed to date have hinted at this

solution, though founded on assumptions outside of the
SMP or not consistently justified. The impasse appar-
ently has been strict adherence to a fixed eigenstate de-
scription of the system developed for experiments de-
signed to reveal fundamental physics, when the effect of
the environment may be treated as weak perturbation
during the experiment. Recognizing that single particle
modes must fluctuate provides an endemic mechanism
for reduction and thermalization without additional as-
sumptions beyond the SMP.
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